Главная страница

Белоконева Любовь Павловна Структура программы программа содержит следующие разделы: пояснительная записка



НазваниеБелоконева Любовь Павловна Структура программы программа содержит следующие разделы: пояснительная записка
страница1/10
Дата27.02.2016
Размер1.28 Mb.
ТипПояснительная записка
  1   2   3   4   5   6   7   8   9   10

Муниципальное бюджетное образовательное учреждение

«Основная общеобразовательная школа №13» х.Михайлов

Шовгеновского района, Республики Адыгея
Рассмотрено Согласовано: Утверждаю:

на педагогическом Зам.директора по УВР Директор школы

совете школы ________/Чехлатая Н.Н./ __________/Синякова Н.И./

Протокол №___ Приказ №_____

от _____20_____г. от ______20___г.

.Рабочая программа

по математике

(5 класс)

( на основе ФГОС ООО)

2013-2014 уч.год

Программу составила:

учитель математики первой категории

Белоконева Любовь Павловна

Структура программы

Программа содержит следующие разделы:

– пояснительная записка, в которой конкретизируются общие цели основного общего образования с учетом специфики учебного предмета;

– общая характеристика учебного предмета;

– место учебного предмета в учебном плане;

– личностные, метапредметные и предметные образовательные результаты освоения учебного предмета;

– содержание учебного предмета;

- тематическое планирование с определением основных видов учебной деятельности;

- описание учебно-методического и материально-технического обеспечения образовательного процесса;

- планируемые результаты изучения предмета.

Пояснительная записка

Программа составлена на основе

  1. Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010г. №1897;

  2. Учебного плана МБОУ «Основная общеобразовательная школа №13» х. Михайлов на 2013-2014 учебный год;

  3. Примерной программы по математике 5-9 классы разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М.Кондаковым, обеспечена УМК для 5–го класса авторов Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.


Математика является одним из основных, системообразующих предметов школьного образования. В ходе её изучения на ступени основного общего образования школьники осваивают основополагающие понятия и идеи, такие, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование, т.е. материал, создающий основу математической грамотности. Вместе с тем подходы к формированию содержания математического школьного образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня.

Целями изучения курса математики в 5 классе являются систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Изучение математики в направлено на достижение целей не только в предметном направлении, но и:

  1. в направлении личностного развития

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

  1. в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общая характеристика учебного предмета

Настоящая программа по математике для 5 класса является логическим продолжением программы для начальной школы. В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

В курсе математики 5 класса выделены 4 содержательные области: натуральные числа и шкалы, площади и объемы, дроби, инструменты для вычислений и измерений.

Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки их табличного сложения и умножения. При изучении геометрического материала основное внимание уделяется формированию навыков измерения и построения отрезков при помощи линейки. В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче. Начиная с этой темы основное внимание, уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.  В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание). В этой теме проводится целенаправленное развитие и за крепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа.     Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий. Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений, так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

При изучении темы «Площади и объемы» учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

В теме «Дроби» изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся .

При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.  Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам. Определенное внимание уделяется решению текстовых за дач на сложение и вычитание, данные в которых выражены десятичными дробями.  При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда. Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.  

В ходе изучения темы «Инструменты для вычислений и измерений» у учащихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.  Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы. Круговые диаграммы дают представления учащимся о наглядном изображении распределения отдельных составные частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.

В течение года планируется провести 15 контрольных работ. запланировано 6 самостоятельных работы и 8 тестов по стержневым темам курса математики 5 класса.

В рабочей программе предусмотрено 15 контрольных работ по темам:

  • Стартовая диагностика.

  • «Натуральные числа и шкалы»,

  • «Сложение и вычитание натуральных чисел»,

  • «Уравнение»,

  • «Умножение и деление натуральных чисел»,

  • «Упрощение выражений. Степень числа»,

  • «Площади и объемы»,

  • «Обыкновенные дроби»,

  • «Сложение и вычитание обыкновенных дробей»,

  • «Сложение и вычитание десятичных дробей»,

  • «Умножение и деление десятичных дробей на натуральные числа»,

  • «Умножение и деление десятичных дробей»,

  • «Проценты»,

  • «Инструменты для измерений»,

  • «Итоговое повторение».

Ценностные ориентиры содержания учебного предмета

Исторически сложилось две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.

Без базовой математической подготовки невозможна постановка образования современного человека.

В школе математика служит опорным предметом для изучения смежных дисциплин.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Место учебного предмета в Базисном учебном

(образовательном) плане
Базисный учебный (образовательный) план на изучение математики в 5 классе основной школы отводит 5 учебных часов в неделю в течение всего года обучения, всего 170 уроков. Из школьного компонента образовательного учреждения выделяется 1 час в неделю на изучение математики в 5 классе, таким образом, количество часов в неделю увеличено до 6, значит всего 204 урока.

Согласно Базисного учебного (образовательного) плана в 5 классе изучается предмет «Математика» (интегрированный предмет), который включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.
Результаты изучения учебного предмета

Изучение математики в 5 классе дает возможность обучающимся достичь следующих результатов развития.

Личностными результатами обучения математике в 5 классе являются:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметными результатами обучения математике в 5 классе являются:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Общими предметными результатами обучения математике в 5 классе являются:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

5) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Планируемые результаты изучения учебного предмета

Выпускник научится:

1. Понимать особенности десятичной системы счисления;

2. Оперировать понятиями, связанными с делимостью натуральных чисел;

3. Выражать числа в эквивалентных формах записи числа, выбирая наиболее подходящую в зависимости от ситуации;

4. Сравнивать и упорядочивать натуральные числа и дроби с одинаковыми знаменателями и числителями;

5. Выполнять вычисления, сочетая устные и письменные приемы вычислений, применение калькулятора;

6. Использовать понятия и умения, связанные с процентами в ходе решения задач;

7. Решать задачи, содержащие буквенные данные, работать с формулами;

8. Распознавать на чертежах, рисунках, моделях и в окружающем мире отрезки, треугольники, прямые, лучи, плоскости, прямоугольники, прямоугольные параллелепипеды;

9. Вычислять объём прямоугольного параллелепипеда;

10. Находить значения длин линейных элементов фигур, градусную меру углов от 0 до 180°;

11. использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

12. вычислять площадь прямоугольников.

Выпускник получит возможность:

1. Познакомиться с позиционными системами счисления с основаниями , отличными от 10;

2. Углубить и развить представление о натуральных числах как способе образования других чисел;

3. Научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ ;

4. Научиться вычислять объёмы геометрических фигур, составленных из прямоугольных параллелепипедов;

5. Вычислять площади фигур, составленных из двух или более прямоугольников.

Содержание учебного предмета (204 часа)

1. Натуральные числа и шкалы(18 часов)

Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Основная цель— систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.                                                                                                            

2.Сложение и вычитание натуральных чисел (23 часа)

Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Основная цель— закрепить и развить навыки сложения и вычитания натуральных чисел. 

3.Умножение и деление натуральных чисел (23 часа)

Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач .

Основная цель — закрепить и развить навыки арифметических действий с натуральными числами.  

4.Площади и объемы (16 часов)

Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.    

Основная цель— расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

5. Обыкновенные дроби (25 часа)

Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Основная цель — познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.  

6.Десятичные дроби.  Сложение и вычитание десятичных дробей  (24 часа)

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.

Основная цель— выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей

7.Умножение и деление десятичных дробей (24 часа)

Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Основная цель— выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

8. Инструменты для вычислений и измерений (24 часа)

Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.  

Основная цель— сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.  

9.Повторение. Решение задач. (27 часов)

  1   2   3   4   5   6   7   8   9   10