|
Программа по математикедля 6 класса составлена на основе Программы «Математика. 5-6 классы / авт сост. И. И. Зубарева, А. Г. Мордкович. М. Мнемозина, 2011.» Пояснительная записка
Hабочая программа по математикедля 6 класса составлена на основе Программы «Математика. 5-6 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М. Мнемозина, 2011.», Федерального государственного образовательного стандарта основного общего образования и требований к результатам освоения общеобразовательной программы основного общего образования, представленных в Примерной программе основного общего образования по математике, Программы развития и формирования универсальных учебных действий для основного общего образования
Рабочая программа разработана в соответствии с методическими рекомендациями к УМК «Математика 6» Зубаревой И.И., Мордковича А.Г., издательство «Мнемозина», 2013 год, включённого в Федеральный перечень учебников на 2013-2014 учебный год. Рабочая программа для 6 класса разработана на 170 учебных часов (5 часов в неделю) с учетом требований ФГОС и регионального образовательного стандарта, базисного учебного плана.
Общая характеристика учебного предмета.
Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов: арифметика, алгебра, функции, вероятность и статистика, геометрия. Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированию первичных представлений о действительном числе. При изложении материала большое внимание уделено наглядности: многие свойства и действия с обыкновенными дробями иллюстрируются красочными рисунками. Но значительная часть материала на этом этапе усваивается учащимися только на уровне представлений, а затем в процессе повторения доводится до уровня знаний и умений.
Изложение геометрического материала отличия от традиционных учебников. Значительно увеличен по сравнению с традиционным курсом объем материала, посвященный пространственным фигурам. В 6 классепродолжается целенаправленная работа по подготовке учащихся к изучению систематического курса геометрии.
Цели обучения
Изучение математики в основной школе направлено на достижение следующих целей:
в направлении личностного развития
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
в предметном направлении
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Планируемые результаты освоения предмета
Изучение математики в 6 классе дает возможность учащимся достичь следующих результатовв направлении
личностного развития:
• умение записывать ход решения по образцу;
• умение замечать в устной речи других учащихся неграмотно сформулированные мысли;
• умение приводить примеры математических фактов;
• дополнение и исправление ответа других учащихся, предлагать свои способы решения задач, решать простейшие творческие задания;
• умение выполнять пошаговый контроль, взаимоконтроль результата учебной математической деятельности;
• способность сопереживать радость, удовольствие от верно решенной задачи;
в метапредметном направлении:
• первоначальные представления о необходимости применения математических моделей при решении задач;
• умение подбирать примеры из жизни в соответствии с математической задачей;
• умение находить в указанных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; умение воспринимать задачи с неполными и избыточными условиями;
• умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации математических фактов, понятий;
• умение принимать выдвинутую гипотезу, соглашаться или не сог-ся с ней;
• 6)умение воспринимать различные стратегии решения задач, применять индуктивные способы рассуждения;
• понимание сущности алгоритма, умение действовать по готовому алгоритму;
• умение принимать готовую цель на уровне учебной задачи;
• умение принимать готовый план деятельности, направленной на решение задач исследовательского характера;
в предметном направлении:
• представление об основных изучаемых понятиях: число (натуральное и дробное), геометрическая фигура (плоская и объемная), уравнение;
• умение работать с математическим текстом (анализировать и осмысливать текст), точно и грамотно выражать свои мысли в устной речи с применением математической терминологии и символики, различать основную и дополнительную информацию, выделять видовые отличия группе предметов (понятий);
развитие представлений о числе и числовых системах (десятичные и др), овладение навыками устных и письменных вычислений;
первоначальное овладение символьным языком алгебры (запись законов арифметических действий), приемами выполнения тождественных преобразований выражений, решения уравнений;
• умение работать с простейшими формулами;
• умение использовать название и смысл геометрических фигур для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений (изображение плоских и простейших пространственных фигур от руки, с помощью линейки и циркуля), развитие глазомера;
• применение простейших свойств плоских фигур при распознавании, для решения геометрических задач;
• умение измерять длины отрезков, величины углов, находить периметр любой плоской фигуры, площадь квадрата и прямоугольника, объем куба и прямоугольного параллелепипеда;
• умение применять математические знания при простейших практических и лабораторных работ.
Требования к уровню подготовки учащихся
В результате изучения математики ученик должен знать /понимать
-как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
-как потребности практики привели математическую науку к необходимости расширения понятия числа;
-вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
-каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики.
Числа и вычисления
уметь:
- правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, положительное, рациональное и др.;
- переходить от одной записи чисел к другой ;
- сравнивать два числа;
- изображать числа точками на координатной прямой;
- выполнять арифметические действия с рациональными числами;
- составлять и решать пропорции;
- решать основные задачи на дроби и проценты,
- применять признаки делимости чисел;
- решать текстовые задачи, включая задачи, связанные с пропорциями.
Выражения и их преобразования
уметь:
- уметь составлять несложные буквенные выражения;
- осуществлять в выражениях числовые подстановки и выполнять соответствующие вычисления;
- использовать правило вычисления алгебраической суммы,
выполнять упрощение выражений.
Уравнения
уметь:
- правильно употреблять термины «уравнение», «корень уравнения»; понимать их в тексте, речи учителя;
- решать линейные уравнения;
- решать текстовые задачи с помощью уравнений.
Геометрические фигуры. Измерение геометрических величин.
уметь:
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать на чертежах и моделях геометрические фигуры;
- изображать геометрические фигуры, выполнять чертежи по условию задачи, осуществлять преобразование фигур;
- владеть практическими навыками использования геометрических инструментов для изображения фигур;
- строить простейшие сечения;
- вычислять значения геометрических величин (длин, площадей, объемов);
- решать геометрические задачи, опираясь на изученные свойства фигур, применяя дополнительные построения, преобразования симметрии,
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни
Элементы логики, комбинаторики и теории вероятностей.
уметь:
- решать комбинаторные задачи с использованием правила умножения;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
Формирование ИКТ- компетентности обучающихся
– соблюдать требования техники безопасности, при работе с устройствами ИКТ
- использовать различные приемы поиска информации в Интернете
Основы учебно-исследовательской и проектной деятельности
– планировать и выполнять учебное исследование, используя оборудование, модели, методы и приемы исследуемой проблемы.
Стратегии смыслового чтения и работы с текстом
– ориентироваться в содержании текста и понимать его целостный смысл ( определять главную тему, общую цель)
- ставить перед собой цель чтения, направляя внимание на полезную в данный момент информацию
Содержание учебного предмета.
Арифметика.
Рациональные числа.
Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.
Проценты. Нахождение процента от величины, величины по ее проценту, процентного отношения. Задачи с разными процентными базами. Отношение, выражение отношения в процентах. Пропорция. Пропорциональные и обратно пропорциональные величины.
Натуральные числа.
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное.
Дроби.
Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с разными знаменателями (случаи, требующие применения алгоритма отыскания НОК), умножение и деление обыкновенных дробей. Нахождение части от целого и целого по его части в один прием.
Начальные сведения курса алгебры.
Алгебраические выражения. Уравнения.
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Равенство буквенных выражений. Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую. Решение текстовых задач алгебраическим методом (выделение трех этапов математического моделирования). Отношения. Пропорциональность величин. Координаты.
Координатная прямая. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.Декартовы координаты на плоскости; координаты точки.
Начальные понятия и факты курса геометрии.
Геометрические фигуры и тела, симметрия на плоскости.
Центральная и осевая симметрия. Параллельность прямых. Окружность и круг. Число . Длина окружности. Площадь круга. Наглядные представления о шаре, сфере. Формулы площади сферы и объема шара.
Вероятность (начальные сведения).
Первые представления о вероятности.
Первое представление о понятии «вероятность». Число всех возможных исходов, правило произведения. Благоприятные и неблагоприятные исходы. Подсчет вероятности наступления или не наступления события в простейших случаях. Тематическое планирование учебного материала
5 часов в неделю 170 часов за год
№ урока
| Темы
| К-во часов
| Характеристика основных видов деятельности ученика
(на уровне учебных действий)
|
| Повторение курса 5класса
| 6
|
|
|
|
| 1
| Действия с десятичными дробями
| 1
| 2
| Числовые и буквенные выражения
| 1
| 3
| Задачи на проценты
| 1
| 4
| Решение задач
| 1
| 5
| Решение уравнений
| 1
| 6
| Вводная контрольная работа
| 1
|
| Положительные и отрицательные числа
| 63
|
| 7-12
| Поворот и центральная симметрия
| 6
|
| 13-14
| Положительные и отрицательные числа.
| 2
|
| 15-16
| Координатная прямая
| 2
|
| 17-18
| Противоположные числа.
| 2
|
| 19-20
| Модуль числа
| 2
|
| 21-24
| Сравнение чисел
| 4
|
| 25-27
| Параллельность прямых
| 3
|
| 28
| Контрольная работа №1.
| 1
|
| 29-32
| Числовые выражения, содержащие знаки +, -
| 4
|
| 33-36
| Алгебраическая сумма и ее свойства.
| 4
|
| 37-39
| Правило вычисления значения алгебраической суммы.
| 3
|
| 40-42
| Расстояние между точками координатной прямой
| 3
|
| 43-45
| Осевая симметрия.
| 3
|
| 46-48
| Числовые промежутки.
| 3
|
| 49
| Контрольная работа №2.
| 1
|
| 50
| Закрепление пройденного.
| 1
|
| 51-52
| Умножение и деление положительных и отрицательных чисел.
| 2
|
| 53
| Координаты.
| 1
|
| 54-58
| Координатная плоскость
| 5
|
| 59-62
| Умножение и деление обыкновенных дробей.
| 4
|
| 63-65
| Правило умножения для комбинаторных задач.
| 3
|
| 66
| Контрольная работа №3.
| 1
|
|
| Преобразование буквенных выражений
| 37
|
| 67-70
| Раскрытие скобок.
| 4
|
| 71-76
| Упрощение выражений.
| 6
|
| 77-80
| Решение уравнений.
| 4
|
| 81-88
| Решение задач на составление уравнений.
| 8
|
| 89
| Контрольная работа №4
| 1
|
| 90
| Закрепление пройденного.
| 1
|
| 91-93
| Нахождение части от целого и целого по его части.
| 3
|
| 94-96
| Окружность. Длина окружности.
| 3
|
| 97-99
| Площадь круга.
| 3
|
| 100-101
| Сфера.
| 2
|
| 102
| Контрольная работа №5.
| 1
|
|
| Делимость натуральных чисел
| 32
|
| 103-105
| Делители и кратные.
| 3
|
| 106-109
| Делимость произведения.
| 4
|
| 110-113
| Делимость суммы и разности чисел.
| 4
|
| 114-117
| Признаки делимости на 2, 5, 10, 4 и 25.
| 4
|
| 118-121
| Признаки делимости на 3 и 9.
| 4
|
| 122
| Контрольная работа №6.
| 1
|
| 123-126
| Простые числа. Разложение числа на простые множители.
|
4
|
| 127-128
| Наибольший общий делитель.
| 2
|
| 129-131
| Взаимно простые числа. Признак делимости на произведение. Наименьшее общее кратное.
|
3
|
| 132
| Контрольная работа №7.
| 1
|
| 133
| Закрепление пройденного.
| 1
|
|
| Математика вокруг нас
| 28
|
| 134-137
| Отношение двух чисел.
| 4
|
| 138-141
| Диаграммы.
| 4
|
| 142-145
| Пропорциональность величин.
| 4
|
| 146-149
| Решение задач с помощью пропорций.
| 4
|
| 150
| Контрольная работа №8.
| 1
|
| 151-157
| Разные задачи.
| 7
|
| 158-159
| Первое знакомство с понятием вероятности.
| 2
|
| 160-161
| Первое знакомство с подсчетом вероятности.
| 2
|
|
| Обобщающее повторение курса математики за 6 класс
| 9
|
| 162-163
| Положительные и отрицательные числа.
| 2
|
| 164-165
| Преобразование буквенных выражений
| 2
|
| 166
| Делимость натуральных чисел
| 1
|
| 167-168
| Решение задач разными способами
| 2
|
| 169
| Итоговая контрольная работа
| 1
|
| 170
| Закрепление пройденного.
| 1
|
|
|
|
|
|
|
Всего за год 170 часов
|
|
| |
|
|