|
Программа по математике для уч ся 2 класса Пояснительная записка Рабочая программа по математике для уч – ся 2 класса
Пояснительная записка
Программа разработана на основе примерной программы начального общего образования по математике, авторской программы Л.Г. Петерсон, соответствует Федеральному государственному образовательному стандарту начального общего образования, учебнику «Математика. 2 класс» (автор Л.Г. Петерсон: в 3 ч. - М.: «Ювента», 2011) и является составной частью Образовательной системы «Школа 2100…».
Цели обучения в предлагаемом курсе математики, сформулированные как линии развития личности ученика средствами предмета: уметь
использовать математические представления для описания окружающего мира (предметов, процессов, явлений) в количественном и пространственном отношении;
производить вычисления для принятия решений в различных жизненных ситуациях;
читать и записывать сведения об окружающем мире на языке математики;
формировать основы рационального мышления, математической речи и аргументации;
работать в соответствии с заданными алгоритмами;
узнавать в объектах окружающего мира известные геометрические формы и работать с ними;
вести поиск информации (фактов, закономерностей, оснований для упорядочивания), преобразовать её в удобные для изучения и применения формы.
Общая характеристика учебного предмета
Данный курс создан на основе личностно ориентированных, деятельностно ориентированных и культурно ориентированных принципов, сформулированных в образовательной программе «Школа 2100», основной целью которой является формирование функционально грамотной личности, готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно-нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно-воспитательного процесса.
Важнейшей отличительной особенностью данного курса с точки зрения содержания является включение наряду с общепринятыми для начальной школы линиями «Числа и действия над ними», «Текстовые задачи», «Величины», «Элементы геометрии», «Элементы алгебры», ещё и таких содержательных линий, как «Стохастика» и «Занимательные и нестандартные задачи». Кроме того, следует отметить, что предлагаемый курс математики содержит материалы для системной проектной деятельности и работы с жизненными (компетентностными) задачами.
Место курса в учебном плане
Курс разработан в соответствии с базисным учебным (образовательным) планом общеобразова-
тельных учреждений РФ.
Реализация принципа минимакса в образовательном процессе позволяет использовать данный курс при 5 ч в неделю за счѐт школьного компонента во 2классе— 170 ч.
Роль учебного курса, предмета в достижении обучающимися
планируемых результатов освоения основной образовательной
программы школы;
В результате освоения предметного содержания предлагаемого курса математики у учащихся предполагается формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных)позволяющих достигать предметных, метапредметных и личностных результатов.
Познавательные: в предлагаемом курсе математики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, поиска решения задач у учеников формируются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать обоснованные и необоснованные суждения, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации (используя при решении самых разных математических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с математическим содержанием, требующие различного уровня логического мышления. Отличительной особенностью рассматриваемого курса математики является раннее появление (уже в первом классе) содержательного компонента «Элементы логики, комбинаторики, статистики и теории вероятностей», что обусловлено активной пропедевтикой этого компонента в начальной школе.
Регулятивные:математическое содержание позволяет развивать и эту группу умений. В процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат (такая работа задана самой структурой учебника).
Коммуникативные: в процессе изучения математики осуществляется знакомство с математическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием математических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи.
Работая в соответствии с инструкциями к заданиям учебника, дети учатся работать в парах, выполняя заданные в учебнике проекты в малых группах. Умение достигать результата, используя общие интеллектуальные усилия и практические действия, является важнейшим умением для современного человека.
Образовательные и воспитательные задачи обучения математике решаются комплексно. В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности. При этом в первом классе проблемная ситуация естественным образом строится на дидактической игре.
Деятельностный подход – основной способ получения знаний
В результате освоения предметного содержания курса математики у учащихся должны сформироваться как предметные, так и общие учебные умения, а также способы познавательной деятельности. Такая работа может эффективно осуществляться только в том случае, если ребёнок будет испытывать мотивацию к деятельности, для него будут не только ясны рассматриваемые знания и алгоритмы действий, но и представлена интересная возможность для их реализации.
Предполагается, что образовательные и воспитательные задачи обучения математике будут решаться комплексно. Учитель имеет право самостоятельного выбора технологий, методик и приёмов педагогической деятельности, однако при этом необходимо понимать, что необходимо эффективное достижение целей, обозначенных федеральным государственным образовательным стандартом начального общего образования.
Рассматриваемый курс математики предлагает решение новых образовательных задач путём использования современных образовательных технологий.
В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности. При этом в первом классе проблемная ситуация естественным образом строится на дидактической игре.
Материалы курса организованы таким образом, чтобы педагог и дети могли осуществлять дифференцированный подход в обучении и обладали правом выбора уровня решаемых математических задач.
В предлагаемом курсе математики представлены задачи разного уровня сложности по изучаемой теме. Это создаёт возможность построения для каждого ученика самостоятельного образовательного маршрута. Важно, чтобы его вместе планировали ученик и учитель. Именно по этой причине авторы не разделили материалы учебника на основной и дополнительный – это делают дети под руководством учителя на уроке. Учитель при этом ориентируется на требования стандартов российского образования как основы изучаемого материала.
Мы пользуемся общим для учебников Образовательной системы «Школа 2100» принципом минимакса1. Согласно этому принципу учебники содержат учебные материалы, входящие в минимум содержания (базовый уровень), и задачи повышенного уровня сложности (программный и максимальный уровень), не обязательные для всех. Таким образом, ученик должен освоить минимум, но может освоить максимум.
Важнейшей отличительной особенностью данного курса с точки зрения деятельностного подхода является включение в него специальных заданий на применение существующих знаний «для себя» через дидактическую игру, проектную деятельность и работу с жизненными (компетентностными) задачами. Содержание учебной дисциплины
136 часов (4 часа в неделю) и 34 часа математической логики, всего 170 часов
Числа и арифметические действия с ними (60 ч)
Приемы устного сложения и вычитания двузначных чисел. Запись сложения и вычитания двузначных чисел « в столбик». Сложение и вычитание двузначных чисел с переходом через разряд.
Сотня. Счет сотнями. Наглядное изображение сотен. Чтение, запись, сравнение, сложение и вычитание « круглых сотен» (чисел с нулями на конце, выражающих целое число сотен). Счет сотнями, десятками и единицами. Наглядное изображение трехзначных чисел. Чтение, запись, упорядочивание и сравнение трехзначных чисел, их представление в виде суммы сотен, десятков и единиц (десятичный состав). Сравнение, сложение и вычитание трехзначных чисел. Аналогия между десятичной системой записи трехзначных чисел и десятичной системой мер.
Скобки. Порядок выполнения действий в выражениях, содержащих сложение и вычитание (со скобками и без них).
Сочетательное свойство сложения. Вычитание суммы из числа. Вычитание числа из суммы. Использование свойств сложения и вычитания для рационализации вычислений
Умножение и деление натуральных чисел. Знаки умножения и деления. Название компонентов и результатов умножения и деления. Графическая интерпретация умножения и деления. Связь между умножением и делением. Проверка умножения и деления. Нахождение неизвестного множителя, делимого, делителя. Связь между компонентами и результатов умножения и деления.
Кратное сравнение чисел (больше в ..., меньше в ...). Делители и кратные.
Частные случаи умножения и деления с 0 и 1.
Невозможность деления на 0.
Порядок выполнения действий в выражениях, содержащих умножение и деление (со скобками и без них).
Переместительное свойство умножения.
Таблица умножения. Табличное умножение и деление чисел.
Сочетательное свойство умножения. Умножение и деление на 10 и на 100. Умножение и деление круглых чисел.
Порядок выполнения действий в выражениях, содержащих сложение, вычитание, умножение и деление (со скобками и без них).
Распределительное свойство умножения. Правило деления суммы на число. Внетабличное умножение и деление. Устные приемы внетабличного умножения и деления. Использование свойств умножения и деления для рационализации вычислений.
Деление с остатком с помощью моделей. Компоненты деления с остатком, взаимосвязь между ними. Алгоритм деления с остатком. Проверка деления с остатком.
Тысяча, ее графическое изображение. Сложение и вычитание в пределах 1000. Устное сложение, вычитание, умножение и деление чисел в пределах 1000 в случаях, сводимых к действиям в пределах 100.
Работа с текстовыми задачами (28 ч)
Анализ задачи, построение графических моделей, планирование и реализация решения.
Простые задачи на смысл умножения и деления (на равные части и по содержанию), их краткая запись с помощью таблиц. Задачи на кратное сравнение (содержащие отношения « больше (меньше) в…»). Взаимно обратные задачи.
Задачи на нахождение « задуманного числа».
Составные задачи в 2–4 действия на все арифметические действия в пределах 1000.
Задачи с буквенными данными. Задачи на вычисление длины ломаной; периметра треугольника и четырехугольника; площади и периметра прямоугольника и квадрата.
Сложение и вычитание изученных величин при решении задач.
Геометрические фигуры и величины (20 ч)
Прямая, луч, отрезок. Параллельные и пересекающиеся прямые.. Периметр многоугольника. Ломаная, длина ломаной.
Плоскость. Угол. Прямой, острый и тупой углы. Перпендикулярные прямые.
Прямоугольник. Квадрат. Свойства сторон и углов прямоугольника и квадрата. Построение прямоугольника и квадрата на клетчатой бумаге по заданным длинам их сторон.
Прямоугольный параллелепипед, куб. Круг и окружность, их центр, радиус, диаметр. Циркуль. Вычерчивание узоров из окружностей с помощью циркуля.
Составление фигур из частей и разбиение фигур на части. Пересечение геометрических фигур.
Единицы длины: миллиметр, километр.
Периметр прямоугольника и квадрата.
Площадь геометрической фигуры. Непосредственное сравнение фигур по площади. Измерение площади. Единицы площади (квадратный сантиметр, квадратный дециметр, квадратный метр) и соотношения между ними. Площадь прямоугольника. Площадь квадрата. Площади фигур, составленных из прямоугольников и квадратов.
Объем геометрической фигуры. Единицы объема (кубический сантиметр, кубический дециметр, кубический метр) и соотношения между ними. Объем прямоугольного параллелепипеда, объем куба. Преобразование, сравнение, сложение и вычитание однородных геометрических величин.
Величины и зависимости между ними (6 ч)
Зависимость результата измерения от выбора мерки. Сложение и вычитание величин. Необходимость выбора единой мерки при сравнении, сложении и вычитании величин. Поиск закономерностей. Наблюдение зависимостей между компонента и результатами умножения и деления.
Формула площади прямоугольника: S = a · b.
Формула объема прямоугольного параллелепипеда: V = (a × b) × c.
Алгебраические представления (10 ч)
Чтение и запись числовых и буквенных выражений, содержащих действия сложения, вычитания, умножения и деления (со скобками и без скобок). Вычисление значений простейших буквенных выражений при заданных значениях букв.
Запись взаимосвязи между умножением и делением с помощью буквенных равенств вида: а · b = с, b · а = с, с : а = b, с : b = a.
Обобщенная запись свойств 0 и 1 с помощью буквенных формул: а · 1 = 1 · а = а; а · 0 = 0 · а = 0; а : 1 = а; 0 ·: а = 0 и др. Обобщенная запись свойств арифметических действий с помощью
буквенных формул: а + b = b + а − переместительное свойство сложения, (а + b) + с = а + (b + с) − сочетательное свойство сложения, а · b = b · а − переместительное свойство умножения, (а · b) · с = а · (b · с) − сочетательное свойство умножения, (а + b) · с = а · с + b · с − распределительное свойство умножения (умножение суммы на число), (а + b) − с = (а − с) + b = а + (b − с) − вычитание числа из суммы, а − (b + с) = = а − b − с − вычитание суммы из числа, (а + b) : с = а : с + b : с − деление суммы на число и др.
Уравнения вида а · х = b, а : х = b, x : a = b, решаемые на основе графической модели (прямоугольник). Комментирование решения уравнений.
Математический язык и элементы логики (2 ч)
Знакомство со знаками умножения и деления, скобками, способами изображения и обозначения прямой, луча, угла, квадрата, прямоугольника, окружности и круга, их радиуса, диаметра, центра.
Определение истинности и ложности высказываний. Построение простейших высказываний вида « верно/неверно, что ...» , « не» , « если ..., то ...» .
Построение способов решения текстовых задач. Знакомство с задачами логического характера и способами их решения.
Работа с информацией и анализ данных (10 ч)
Операция. Объект и результат операции. Операции над предметами, фигурами, числами. Прямые и обратные операции. Отыскание неизвестных: объекта операции, выполняемой операции, результата операции.
Программа действий. Алгоритм. Линейные, разветвленные и циклические алгоритмы. Составление, запись и выполнение алгоритмов различных видов.
Чтение и заполнение таблицы. Анализ данных таблицы.
Составление последовательности (цепочки) предметов, чисел, фигур и др. по заданному правилу.
Упорядоченный перебор вариантов. Сети линий. Пути. Дерево возможностей.
Сбор и представление информации в справочниках, энциклопедиях, интернет-источниках о продолжительности жизни различных животных и растений, их размерах, составление по полученным данным задач на все четыре арифметических действия, выбор лучших задач и составление « Задачника класса» .
Планируемые результаты освоения учебной дисциплины «Математика»
Личностными результатами изучения предметно-методического курса «Математика» во 2-м классе является формирование следующих умений:
Самостоятельноопределять и высказывать самые простые, общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).
В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельноделать выбор, какой поступок совершить.
Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять своё отношение к миру.
Метапредметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих универсальных учебных действий.
Регулятивные УУД:
Определять цель деятельности на уроке с помощью учителя и самостоятельно.
Учиться совместно с учителем обнаруживать и формулироватьучебнуюпроблему совместно с учителем (для этого в учебнике специально предусмотрен ряд уроков).
Учиться планировать учебную деятельность на уроке.
Высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике).
Работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).
Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.
Определять успешность выполнения своего задания в диалоге с учителем.
Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
Ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.
Делать предварительный отбор источников информации для решения учебной задачи.
Добывать новые знания: находить необходимую информацию как в учебнике, так и в предложенных учителем словарях и энциклопедиях (в учебнике 2-го класса для этого предусмотрена специальная «энциклопедия внутри учебника»).
Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
Перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.
Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.
Коммуникативные УУД:
Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
Слушать и понимать речь других.
Выразительно читать и пересказывать текст.
Вступать в беседу на уроке и в жизни.
Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог) и технология продуктивного чтения.
Совместно договариваться о правилах общения и поведения в школе и следовать им.
Учиться выполнять различные роли в группе (лидера, исполнителя, критика).
Средством формирования этих действий служит работа в малых группах (в методических рекомендациях дан такой вариант проведения уроков).
Предметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих умений.
1-й уровень (необходимый)
Учащиеся должны уметь:
использовать при выполнении заданий названия и последовательность чисел от 1 до 100;
использовать при вычислениях на уровне навыка знание табличных случаев сложения однозначных чисел и соответствующих им случаев вычитания в пределах 20;
использовать при выполнении арифметических действий названия и обозначения операций умножения и деления;
использовать при вычислениях на уровне навыка знание табличных случаев умножения однозначных чисел и соответствующих им случаев деления;
осознанно следовать алгоритму выполнения действий в выражениях со скобками и без них;
использовать в речи названия единиц измерения длины, массы, объёма: метр, дециметр, сантиметр, килограмм; литр.
читать, записывать и сравнивать числа в пределах 100;
осознанно следовать алгоритмам устного и письменного сложения и вычитания чисел в пределах 100;
а) раскрывающие смысл действий сложения, вычитания, умножения и деления;
б) использующие понятия «увеличить в (на)...», «уменьшить в (на)...»;
в) на разностное и кратное сравнение;
- находить значения выражений, содержащих 2–3 действия (со скобками и без скобок);
решать уравнения видаа ± х = b; х – а = b;
измерять длину данного отрезка, чертить отрезок данной длины;
узнавать и называть плоские углы: прямой, тупой и острый;
узнавать и называть плоские геометрические фигуры: треугольник, четырёхугольник, пятиугольник, шестиугольник, многоугольник; выделять из множества четырёхугольников прямоугольники, из множества прямоугольников – квадраты;
различать истинные и ложные высказывания (верные и неверные равенства).
2-й уровень (программный)
Учащиеся должны уметь:
- использовать при решении учебных задач формулы периметра квадрата и прямоугольника;
пользоваться при измерении и нахождении площадей единицами измерения площади: 1 см2, 1 дм2.
выполнять умножение и деление чисел с 0, 1, 10;
решать уравнения вида а ± х = b; х – а = b; а ∙ х = b; а : х = b; х : а = b;
находить значения выражений вида а ± 5; 4 – а; а : 2; а ∙ 4; 6 : а при заданных числовых значениях переменной;
решать задачи в 2–3 действия, основанные на четырёх арифметических операциях;
находить длину ломаной и периметр многоугольника как сумму длин его сторон;
использовать знание формул периметра и площади прямоугольника (квадрата) при решении задач;
чертить квадрат по заданной стороне, прямоугольник по заданным двум сторонам;
узнавать и называть объёмные фигуры: куб, шар, пирамиду;
записывать в таблицу данные, содержащиеся в тексте;
читать информацию, заданную с помощью линейных диаграмм;
решать арифметические ребусы и числовые головоломки, содержащие два действия (сложение и/или вычитание);
составлять истинные высказывания (верные равенства и неравенства);
заполнять магические квадраты размером 3×3;
находить число перестановок не более чем из трёх элементов;
находить число пар на множестве из 3–5 элементов (число сочетаний по 2);
находить число пар, один элемент которых принадлежит одному множеству, а другой – второму множеству;
проходить числовые лабиринты, содержащие двое-трое ворот;
объяснять решение задач по перекладыванию одной-двух палочек с заданным условием и решением;
решать простейшие задачи на разрезание и составление фигур;
уметь объяснить, как получен результат заданного математического фокуса.
Система оценки планируемыхрезультатов
Текущий контроль по математике может осуществлять как в письменной форме, так и в устной форме. Проверка только одного определенного умения (например, сравнение многозначных чисел, умение находить площадь прямоугольника).
|
|
|