|
Рабочая программа. Наименование учебного предмета. М атематика. Класс. 5-6 (5 «а»). Уровень общего образования Муниципальное бюджетное общеобразовательное учреждение «Гимназия №1 г.Новопавловск»
Утверждаю:
| директор МБОУ «Гимназия №1 г.Новопавловск»
| _______________И.А. Мельниченко
| Приказ №____от __________2015 г.
| Рабочая программа.
Наименование учебного предмета. Математика.
Класс. 5-6 (5 «а»).
Уровень общего образования____базовый
Срок реализации программы, учебный год. 2года, 2015-2017
Количество часов по учебному плану: 170 часов в год; в неделю 5часов. Всего 340 часов.
Планирование составлено на основе:
Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089.
Федеральный базисный учебный план для основного общего образования.
Примерной программы по математике среднего (полного) общего образования (базовый уровень) для общеобразовательных школ, гимназий, лицеев. (Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Просвещение, 2011г.)
Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
5. Авторской программы В.И. Жохова по математике для 5-6 класса.
6. Математика 5 класс. Учебник для общеобразоват..учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М., 2013.
7. Математика 6 класс. Учебник для общеобразоват. учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, СИ. Шварцбурд.— М., 2013.
Рабочую программу составил(а)____________________/Фоменко О.Ф. /
Пояснительная записка.
Рабочая программа разработана на основании
Федерального компонента Государственного стандарта основного общего образования по математике.
Примерной программы по учебным предметам: математика: 5-9 классы / Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Просвещения, 2011г.
Авторской программы В.И. Жохова по математике для 5-6 класса.
1. В ходе освоения содержания курса математики в 5-6 классах учащиеся получают возможность развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
Общие цели математики для 5-6 класса.
Цели обучения математике в школе определяются ее ролью в развитии общества в целом и в развитии интеллекта, формировании личности каждого человека.
Математика ― наука о наиболее общих и фундаментальных структурах реального мира, является важнейшим источник принципиальных идей для всех естественных наук и современ-ных технологий. Весь научно-технический прогресс человечества напрямую связан с разви-тием математики. Поэтому, с одной стороны, без знания математики невозможно выработать адекватное представление о мире. С другой стороны, математически образованному человеку легче войти в любую новую для него объективную проблематику.
Математика позволяет успешно решать практические задачи: оптимизировать семейный бюджет и правильно распределять время, критически ориентироваться в статистической, экономической и логической информации, правильно оценивать рентабельность возможных деловых партнеров и предложений, проводить несложные инженерные и технические расчеты для практических задач.
Математическое образование — это испытанное столетиями средство интеллектуального развития в условиях массового обучения. Такое развитие обеспечивается принятым в качест-венном математическом образовании систематическим, дедуктивным изложением теории в сочетании с решением хорошо подобранных задач. Успешное изучение математики облегчает и улучшает изучение других учебных дисциплин.
Математика — наиболее точная из наук. Учебный предмет «Математика» обладает исключительным воспитательным потенциалом: воспитывает интеллектуальную корректность, критичность мышления, способность различать обоснованные и необоснован-ные суждения, приучает к продолжительной умственной деятельности.
Математика играет важную роль в формировании у школьников умения учиться.
Цели обучения.
Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.
систематическое развитие понятия числа;
выработка умений выполнять устно и письменно арифметические действия над числами;
выработка умений переводить практические задачи на язык математики;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные преставления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Усвоенные знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других школьных дисциплин, но и для решения многих практических задач во взрослой жизни.
Изучение математики направлено на достижение следующих целей:
В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном интеллектуальном обществе;
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как о форме описания и методе познания действительности;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе, изучения смежных дисциплин, применения в повседневной жизни (систематическое развитие числа, выработка умений устно и письменно выполнять арифметические действия над обыкновенными дробями и рациональными числами, перевод практических задач на язык математики, подготовка учащихся к дальнейшему изучению курсов «Алгебра» и «Геометрия», формирование умения пользоваться алгоритмами);
создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности. Программа определяет ряд задач, решение которых направлено на достижение основных целей основного общего математического образования:
Формировать элементы самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);
Развивать основы логического, знаково-символического и алгоритмического мышления; пространственного воображения; математической речи; умения вести поиск информации и работать с ней;
Развивать познавательные способности;
Воспитывать стремление к расширению математических знаний;
Способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
Воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Решение названных задач обеспечит осознание школьниками универсальности математических способов познания мира, усвоение математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.
Общий курс математики является курсом интегрированным: в нём объединён арифметический, геометрический и алгебраический материал.
Содержание обучения представлено в программе разделами: «Числа и вычисления», «Выражения и их преобразования», «Уравнения и неравенства», «Геометрические фигуры и их свойства. Измерение геометрических величин».
Программа предусматривает дальнейшую работу с величинами (длина, площадь, масса, вместимость, время) и их измерением, с единицами измерения однородных величин и соотношениями между ними.
Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит основным элементом для изучения смежных дисциплин.
Приоритетные формы и методы работы.
Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала.
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
Основные типы учебных занятий:
урок изучения нового учебного материала;
урок закрепления и применения знаний;
урок обобщающего повторения и систематизации знаний;
урок контроля знаний и умений.
Основным типом урока является комбинированный., а также индивидуальные, групповые, индивидуально-групповые, фронтальные.
На уроках используются такие формы занятий как:
практические занятия;
тренинг;
консультация;
Приоритетные виды и формы контроля.
Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 40 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием .
Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся: Данная рабочая программа содержит формы, способы и средства проверки и оценки результатов обучения, как:
контрольная работа;
проверочные и обучающие самостоятельные работы;
тестовая работа;
графические, словарные математические диктанты;
элементы исследовательской работы.
Система оценивания.
Предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов (структура тематического зачета: критерии оценивания, обязательная часть – ученик научится, дополнительная часть – ученик может научиться). Оценка достижения метапредметных результатов обучения будут проводиться в ходе выполнения учащимися проектно – исследовательской деятельности: текущего выполнения учебных исследований и учебных проектов; защита индивидуального проекта. Срок реализации рабочей программы – два года.
2. Общая характеристика учебного предмета.
В курсе математики 5-6 класса можно выделить следующие основные содержательные линии: арифметика, элементы алгебры, вероятность и статистика, наглядная геометрия.
Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимся математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение различных задач, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.
Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы правильной геометрической речи, развивает образное мышление и пространственные представления.
Линия «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащегося функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Программа составлена с учетом принципа преемственности между основными ступенями обучения: начальной, основной и полной средней школой.
Содержание обучения.
Числа и вычисления.
Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем.
Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители.
Обыкновенные дроби. Основное свойство дроби. Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными.
Среднее арифметическое.
Отношения. Пропорции. Основное свойство пропорции.
Проценты. Основные задачи на проценты.
Решение текстовых задач арифметическими приемами.
Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.
Рациональные числа. Изображение чисел точками координатной прямой.
Приближенные значения. Округление натуральных чисел и десятичных дробей. Прикидка результатов вычислений.
Выражения и их преобразования
Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий.
Уравнения и неравенства
Уравнение с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений. Числовые неравенства.
Функции
Прямоугольная система координат на плоскости. Таблицы и диаграммы. Графики реальных процессов.
Геометрические фигуры и их свойства. Измерение геометрических величин
Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур.
Отрезок. Длина отрезка и ее свойства. Расстояние между точками.
Угол. Виды углов. Градусная мера угла.
Параллельные прямые. Перпендикулярные прямые.
Многоугольники. Правильные многоугольники.
Окружность и круг. Длина окружности. Площадь круга.
Формула объема прямоугольного параллелепипеда.
Множества и комбинаторика
Множество. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Целевые установки для учащихся 5-6 классов
Числа и вычисления
В результате изучения курса математики учащиеся должны:
• правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, иррациональное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной или обыкновенной дроби);
• сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой; выполнять арифметические действия с рациональными числами; находить значения степеней; сочетать при вычислениях устные и письменные приемы;
• составлять и решать пропорции, решать основные задачи на дроби, проценты;
• округлять целые числа и десятичные дроби, производить прикидку результата вычислений.
Выражения и их преобразования
В результате изучения курса математики учащиеся должны:
• правильно употреблять термины «выражение», «числовое выражение», «буквенное выражение», «значение выражения», понимать их в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения», «разложить на множители»;
• составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;
• находить значение степени с натуральным показателем.
Уравнения и неравенства
В результате изучения курса математики учащиеся должны:
• понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики;
• правильно употреблять термины «уравнение», «неравенство», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение, неравенство»;
• решать линейные уравнения с одной переменной.
Функции
В результате изучения курса математики учащиеся должны:
• познакомиться с примерами зависимостей между реальными величинами (прямая и обратная пропорциональности, линейная функция);
• познакомиться с координатной плоскостью, знать порядок записи координат точек плоскости и их названий, уметь построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости;
• находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;
• интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.
Геометрические фигуры и их свойства. Измерение геометрических величин
В результате изучения курса математики учащиеся должны:
• распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, многоугольники, окружность, круг); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;
• владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
• решать задачи на вычисление геометрических величин (длин, углов, площадей, объемов), применяя изученные свойства фигур и формулы.
3. Место учебного предмета «Математика» в учебном плане.
Рабочая программа рассчитана на 340 часов.
170 часов в 5 классе (5 часов в неделю). 170 часов в 6 классе (5 часов в неделю).
количество учебных недель - 34;
- количество практических и контрольных работ по классам.
В 5 классе- 15 контрольных работ, включая входную и итоговую контрольную работу.
В 6 классе- 15 контрольных работ, включая итоговую контрольную работу.
Уровень обучения – базовый.
|
|
|