Главная страница

Протокол № от «31» августа 2013 г. Руководитель / Казанцева О. М./ Утверждено Директор мобу



Скачать 497.9 Kb.
НазваниеПротокол № от «31» августа 2013 г. Руководитель / Казанцева О. М./ Утверждено Директор мобу
страница1/4
Дата05.04.2016
Размер497.9 Kb.
ТипПротокол
  1   2   3   4

Муниципальное образовательное бюджетное учреждение

«Паникинская средняя общеобразовательная школа»


Принято на педагогическом

совете школы Протокол



от « 31 » августа 2013 г.
Руководитель

_________/ Казанцева О.М./

Утверждено

Директор МОБУ

«Паникинская средняя

общеобразовательная школа»

/Сотникова Г.М/

Приказ №

от «30 » августа 2013 г.





РАБОЧАЯ ПРОГРАММА
ПО АЛГЕБРЕ

7 КЛАСС

2013 –2014 учебный год

Программа разработана на основе авторской программы общеобразовательных учреждений «Алгебра 7 – 9 классы» авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова (издательство Москва «Просвещение», 2008, составитель Бурмистрова Т.А.)

Программу составила: учитель математики Придворова С.В.

Курская область, Медвенский район, с. Паники
2013г.


Пояснительная записка

к рабочей программе по алгебре 7 класса

Рабочая программа составлена на основании:

  • федерального компонента государственного образовательного стандарта основного общего образования по математике (приказ МОиН РФ от 05.03.2004г. № 1089);

  • примерной программы основного общего образования по математике ( письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263);

  • федерального перечня учебников на 2013-2014 учебный год, рекомендованного Министерством образования и науки РФ к использованию в образовательном процессе в ОУ;

  • с учетом требований к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного стандарта общего образования ( «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236);

  • Базисного учебного плана 2013 года.

  • авторской программы общеобразовательных учреждений «Алгебра 7 – 9 классы» авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова (издательство Москва «Просвещение», 2008, составитель Бурмистрова Т.А.)

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Структура документа:

рабочая программа по математике включает разделы:

  • пояснительную записку;

  • основное содержание с примерным распределением учебных часов по разделам курса;

  • учебно-тематический план;

  • календарно-тематическое планирование.

  • учебно-методический комплект;

Изучение математике на ступени основного общего образования направлено на достижение следующих целей:

  • продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Задачи: выработать вычислительные навыки, научить решать задачи с помощью уравнений.

Требования к подготовке обучающихся

В результате изучения алгебры в 7 классе ученик должен

Знать

  • какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

  • что называется линейным уравнением с одной переменной, что значит решить уравнение, что такое корни уравнения.

  • определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

  • определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.

  • определения абсолютной и относительной погрешностей;

  • определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

  • формулы сокращенного умножения: квадратов суммы и разности двух выражений.

  • различные способы разложения многочленов на множители.

  • , что такое линейное уравнение с двумя переменными, система уравнений,

  • различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения;

Уметь

  • осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

  • применять изученную теорию при тождественных преобразованиях выражений.

  • решать линейные уравнения с одной переменной, а также сводящиеся к ним; правильно употреблять термины «уравнение», «корень уравнения», понимать их в тексте и в речи учителя, понимать формулировку задачи «решить уравнение»»; решать текстовые задачи с помощью составления линейных уравнений с одной переменной.

  • применять изученную теорию при решении уравнений с одной переменной, решать задачи с помощью уравнений.

  • правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между

  • применять изученную теорию при выполнении письменных заданий, строить графики.

  • находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3;

  • выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

  • применять изученную теорию при построение графиков функций у=х2, у=х3, упрощать выражения, содержащие степени с натуральным показателем.

  • приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки.

  • умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

  • читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители.

  • применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

  • применять изученную теорию при выполнении письменных заданий по данной теме.

  • правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

  • применять приобретенные знания, умения и навыки при выполнении письменных заданий.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

      • выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах

      • моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

      • интерпретации графиков реальных зависимостей между величинами.


Место предмета в учебном плане МОБУ «Паникинская средняя общеобразовательная школа»
Согласно Федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:

I вариант. 5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов; 2 часа в неделю геометрии во II-IV четверти, итого 50 часов. II вариант: 3 часа в неделю алгебры и 2 часа в неделю геометрии в течение всего учебного года, итого 100 часов алгебры и 70 часов геометрии. III вариант: 4 часа в неделю алгебры и 2 часа в неделю геометрии, итого 140 часов алгебры и 70 часов геометрии.

Учебный план МОБУ «Паникинская средняя общеобразовательная школа» отводит на изучение алгебры в 7-ом классе 5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов в год.

Тематическое и примерное поурочное планирование сделаны в соответствии с учебником «Алгебра», Ю.Н. Макарычева, Н.Г. Миндюка и др., М.: Просвещение, 2010г. и более поздние издания.

Срок реализации рабочей учебной программы – один учебный год.

Уровень обучения: базовый.

Формы организации учебного процесса:

индивидуальные, групповые, индивидуально-групповые, фронтальные,

классные и внеклассные.

Формы контроля: самостоятельная работа, математические диктанты, контрольная работа, наблюдение, работа по карточке, тестирование.

Формы промежуточной и итоговой аттестации:

Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных, работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Отличительные особенности рабочей программы по сравнению с примерной:

В программу внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем. Сравнительная таблица приведена ниже.

№п/п

Раздел

Количество часов в примерной программе

Количество часов в рабочей программе

1

Выражения и их преобразования. Уравнения.

20

21

2

Статистические характеристики

4

4

3

Функции.

14

12

4

Степень с натуральным показателем.

15

15

5

Многочлены.

20

22

6

Формулы сокращенного умножения.

20

20

7

Системы линейных уравнений.

17

14

8

Повторение. Решение задач.

10

12




Итого

120

120

Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности обучающихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Содержание учебного курса по математике для 7 класса

Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах. Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами. Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры. Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
  1   2   3   4