|
Рациональные числа. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный. Проценты. Нахождение процента от величины, величины по ее проценту, процентного отношения. Задачи с разными процентными базами.
Отношение, выражение отношения в процентах. Пропорция. Пропорциональные и обратно пропорциональные величины.
Натуральные числа.
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное.
Дроби.
Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с разными знаменателями (случаи, требующие применения алгоритма отыскания НОК), умножение и деление обыкновенных дробей. Нахождение части от целого и целого по его части в один прием.
Начальные сведения курса алгебры.
Алгебраические выражения. Уравнения.
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Равенство буквенных выражений. Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую.
Решение текстовых задач алгебраическим методом (выделение трех этапов математического моделирования).
Отношения. Пропорциональность величин.
Координаты.
Координатная прямая. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.
Декартовы координаты на плоскости; координаты точки.
Начальные понятия и факты курса геометрии.
Геометрические фигуры и тела, симметрия на плоскости.
Центральная и осевая симметрия. Параллельность прямых. Окружность и круг. Число . Длина окружности. Площадь круга.
Наглядные представления о шаре, сфере. Формулы площади сферы и объема шара.
Вероятность (начальные сведения).
Первые представления о вероятности.
Первое представление о понятии «вероятность». Число всех возможных исходов, правило произведения. Благоприятные и неблагоприятные исходы. Подсчет вероятности наступления или не наступления события в простейших случаях.
Требования к математической подготовке учащихся 6 класса: наличие представлений о числе и числовых системах от натуральных до рациональных чисел; твердых навыков устных, письменных, инструментальных вычислений;
овладение символическим языком алгебры, а также техникой тождественных преобразований простейших буквенных выражений, умение применять приобретенные навыки в ходе решения задач;
овладение приемами решения линейных уравнений; применение полученных умений для решения задач; умение решать задачи выделением трех этапов математического моделирования;
овладение геометрическим языком и умение использовать его для описания предметов окружающего мира, наличие пространственных представлений, изобразительных умений, навыков геометрических построений и измерений;
наличие представлений о пропорциональных и обратно пропорциональных величинах; умение составлять и решать пропорции;
наличие представлений о вероятности, о благоприятных и неблагоприятных исходах; умение применять правило произведения в простейших случаях; наличие представлений о подсчете вероятности.
1. Оценка письменных контрольных работ обучающихся по математике. Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
|
|
|