Главная страница

Программа основного общего образования по математике. Математика 5-6, Алгебра 7-9 А. Г. Мордкович



НазваниеПрограмма основного общего образования по математике. Математика 5-6, Алгебра 7-9 А. Г. Мордкович
страница9/12
Дата29.02.2016
Размер2.09 Mb.
ТипПрограмма
1   ...   4   5   6   7   8   9   10   11   12



п/п

Тема

Кол-во

часов

Характеристика основных видов деятельности ученика

(на основе учебных действий)


Геометрия 8 класс (68 часов).

Четырехугольники.

Цель:

изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

1


1.Многоугольники.

2.Параллелограмм и трапеция..

3.Прямоугольник, ромб, квадрат.

Решение задач.

Контрольная работа №1.

14


Формулировать определения параллелограмма, пря­моугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четырехугольников с по­мощью компьютерных программ.

Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чер­тежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов решения. Интерпретировать полученный резуль­тат и сопоставлять его с условием задачи


Площадь.

Цель:

расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

2


1.Площадь многоугольника.

2.Площадь параллелограмма, треугольника и трапеции.

3.Теорема Пифагора.

Решение задач.

Контрольная работа №2.

14


Формулировать и доказывать те­орему Пифагора и обратную ей.

Выводить формулы площадей прямоугольника, па­раллелограмма, треугольника и трапеции.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление площадей треугольников, четы­рехугольников и многоугольников. Опираясь на данные условия задачи, на­ходить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопо­ставлять его с условием задачи


Подобные треугольники.

Цель:

ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их примене­ния; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

3


1.Определение подобных треугольников.

2.Признаки подобия треугольников.

Контрольная работа №3.

3.Применение подобия к доказательству теорем и решению задач.

4.Соотношения между сторонами и углами прямоугольного треугольника.

Контрольная работа №4.

19



Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о призна­ках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольни­ка через его стороны.

Формулировать определения синуса, косинуса, тан­генса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной три­гонометрической функции угла вычислять значения дру­гих тригонометрических функций этого угла.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заключе­ние. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в хо­де решения. Опираясь на данные условия задачи, прово­дить необходимые рассуждения. Интерпретировать полу­ченный результат и сопоставлять его с условием задачи


Окружность.

Цель:

расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, свя­занные с окружностью; познакомить учащихся с четырьмя заме­чательными точками треугольника.

4


1.Касательная к окружности.

2.Центральные и вписанные углы.

3.Четыре замечательные точки треугольника.

4.Вписенная и описанная окружности.

Решение задач.

Контрольная работа №5.

16



Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окруж­ностью.

Формулировать и доказывать теоремы о вписан­ных углах, углах, связанных с окружностью.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Исследовать свойства конфигураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на вычисление линейных величин, градусной меры угла.

Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные по­строения в ходе решения. Выделять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

5

Повторение. Решение задач.

5

Знать материал, изученный в курсе математики за 8 класс.

Владеть общим приемом решения задач.

Уметь применять полученные знания на практике.

Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде.




Итого:

68



1   ...   4   5   6   7   8   9   10   11   12