Главная страница

Программа основного общего образования по математике. Математика 5-6, Алгебра 7-9 А. Г. Мордкович



НазваниеПрограмма основного общего образования по математике. Математика 5-6, Алгебра 7-9 А. Г. Мордкович
страница1/12
Дата29.02.2016
Размер2.09 Mb.
ТипПрограмма
  1   2   3   4   5   6   7   8   9   ...   12

Программа основного общего образования по математике.

Математика 5-6, Алгебра 7-9 А.Г.Мордкович

Геометрия 7-9 Л.С.Атанасян
1. Пояснительная записка



Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования, примерной программы основного общего образования по математике. Серия «Стандарты второго поколения». Программа подготовлена в рамках проекта «Разработка, апробация и внедрение Федеральных государственных стандартов общего образования второго поколения», реализуемого Российской академией образования по заказу Министерства образования и науки Российской Федерации и Федерального агентства по образованию. Руководители проекта: вице- президент РАО А.А. Кузнецов, академик - секретарь Отделения общего образования РАО М.В. Рыжаков, член президиума РАО А.М. Кандаков; базисного учебного плана образовательного учреждения на 2013-2017 уч/года и обеспечена УМК для 5–9-го классов автора А.Г. Мордкович и др., УМК 7-9-го классов автор Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев.

Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся.

В основу настоящей программы положены педагогические и дидактические принципы (личностно ориентированные; культурно - ориентированные; деятельностно - ориентированные и т.д.) вариативного развивающего образования, и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.
Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.
Культурно - ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.
Деятельностно - ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Программа зада­ет перечень вопросов, которые подлежат обязательному изучению в основной школе. Она так же является логическим продолжением курса математики начальной школы (принцип преемственности). В основе курса лежит авторская идея А.Г.Мордковича; программа позволяет обеспечивать формирование как предметных умений, так и универсальных учебных действий школьников;

программа позволяет обеспечивать достижение целей в направлении личностного развития, в метапредметном направлении и предметном направлении.

Обучение математике в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в раз­витии цивилизации и современного общества;

  • развитие логического и критического мышления, куль­туры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объектив­ности, способности к преодолению мыслительных стереоти­пов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих соци­альную мобильность, способность принимать самостоятель­ные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способностей;

  1. в метапредметном направлении:

  • формирование представлений о математике как части общечеловеческой культуры, о зна­чимости математики в развитии цивилизации и современного общества;

  • развитие представлений о математике как форме опи­сания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характерных для математики и являющихся осно­вой познавательной культуры, значимой для различных сфер человеческой деятельности;

  1. в предметном направлении:

  • овладение математическими знаниями и умениями, не­обходимыми для продолжения образования, изучения смеж­ных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для мате­матической деятельности.


Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Целью изучения курса алгебры в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
2. Общая характеристика учебного предмета «Математика»

Настоящая программа основного общего образования по математике составлена на основе Фундаментального ядра со­держания общего образования и Требований к результатам общего образования, представленных в федеральном государ­ственном образовательном стандарте общего образования, с учетом преемственности с Примерными программами для на­чального общего образования. В ней также учитываются ос­новные идеи и положения Программы развития и формиро­вания универсальных учебных действий для основного обще­го образования.

Содержание математического образования применительно к основной школе представлено в виде следующих содержа­тельных разделов. Это арифметика; алгебра; функции; ве­роятность и статистика; геометрия. Наряду с этим в со­держание основного общего образования включены два до­полнительных методологических раздела: логика и множест­ва; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурно­го развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, про­низывающую все основные разделы содержания математичес­кого образования на данной ступени обучения. При этом пер­вая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального матема­тического языка, вторая — «Математика в историческом раз­витии» — способствует созданию общекультурного, гуманитар­ного фона изучения курса.

Содержание раздела «Арифметика» служит базой для даль­нейшего изучения учащимися математики, способствует разви­тию их логического мышления, формированию умения поль­зоваться алгоритмами, а также приобретению практических на­выков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и ирра­циональными числами, формированием первичных представ­лений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комп­лексных числах), так же как и более сложные вопросы ариф­метики (алгоритм Евклида, основная теорема арифметики), от­несено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» способствует формирова­нию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружа­ющей реальности. Язык алгебры подчеркивает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображения учащихся, их способностей к математичес­кому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригонометрическими функ­циями и преобразованиями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вно­сит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной гра­мотности — умения воспринимать и критически анализиро­вать информацию, представленную в различных формах, по­нимать вероятностный характер многих реальных зависимос­тей, производить простейшие вероятностные расчеты. Изуче­ние основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его ис­следования, формируется понимание роли статистики как ис­точника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространственное воображение и логическое мышление пу­тем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного ха­рактера. Существенная роль при этом отводится развитию ге­ометрической интуиции. Сочетание наглядности со стро­гостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математичес­ких дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изуча­ется при рассмотрении различных вопросов курса. Соответ­ствующий материал нацелен на математическое развитие уча­щихся, формирование у них умения точно, сжато и ясно из­лагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирования представлений о математике как час­ти человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На не­го не выделяется специальных уроков, усвоение его не конт­ролируется, но содержание этого раздела органично присут­ствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания мате­матического образования.

Данная программа по математике для основной школы является логическим продолжением программы для начальной школы и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы.
3.Место предмета «Математика» в учебном плане.
В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия». Общее количество уроков в неделю с 5 по 9 класс составляет 25 часов (5–6 класс – по 5 часов в неделю, 7–9 класс – алгебра по 3 часа в неделю, геометрия – по 2 часа в неделю.)

Распределение учебного времени между этими предметами представлено в таблице.

Классы

Предметы математического цикла

Количество часов на ступени основного образования

5-6

Математика

340 (170*2 года)

7-9

Математика (Алгебра)

306 (102*3 года)

Математика (Геометрия)

204 (68*3 года)

Всего

850


4. Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

Математическое образование является обязательной и не­отъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих результатов:

  1. в направлении личностного развития:




  • Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • Развитие интереса к математическому творчеству и математических способностей;

  • Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • Представление о математической науке как сфере чело­веческой деятельности, об этапах ее развития, о ее значимо­сти для развития цивилизации;

  • Креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • Умение контролировать процесс и результат учебной математической деятельности;

  • Способность к эмоциональному восприятию математи­ческих объектов, задач, решений, рассуждений;




  1. в метапредметном направлении:




  • Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  • Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, сред­стве моделирования явлений и процессов;

  • Умение видеть математическую задачу в контексте проб­лемной ситуации в других дисциплинах, в окружающей жизни;

  • Умение находить в различных источниках информацию, необходимую для решения математических проблем, представ­лять ее в понятной форме, принимать решение в условиях не­полной и избыточной, точной и вероятностной информации;

  • Умение понимать и использовать математические сред­ства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • Умение выдвигать гипотезы при решении учебных за­дач, понимать необходимость их проверки;

  • Умение применять индуктивные и дедуктивные спосо­бы рассуждений, видеть различные стратегии решения задач;

  • Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алго­ритмом;

  • Умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для решения учебных математических проб­лем;

  • Умение планировать и осуществлять деятельность, на­правленную на решение задач исследовательского характера;




  1. в предметном направлении:




  • Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;

  • Овладение базовым понятийным аппаратом по основ­ным разделам содержания, представление об основных изуча­емых понятиях (число, геометрическая фигура, уравнение, вероятность) как важнейших математических моде­лях, позволяющих описывать и изучать реальные процессы и явления;

  • Умение работать с математическим текстом (анализиро­вать, извлекать необходимую информацию), грамотно приме­нять математическую терминологию и символику, использо­вать различные языки математики;

  • Развитие представлений о числе, натуральных чисел, овладение навыка­ми устных, письменных, инструментальных вычислений;

  • Овладение основными способами представления и ана­лиза статистических данных; наличие представлений о стати­стических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

  • Усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  • Умения измерять длины отрезков, величины углов, ис­пользовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

  • Умение применять изученные понятия, результаты, ме­тоды для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

  • Умение проводить классификации, логические обосно­вания, доказательства математических утверждений;

  • Умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

  • Овладение символьным языком алгебры, приемами вы­полнения тождественных преобразований рациональных вы­ражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

  • Овладение системой функциональных понятий, функ­циональным языком и символикой, умение на основе функ­ционально-графических представлений описывать и анализи­ровать реальные зависимости;

  • Овладение геометрическим языком, умение использо­вать его для описания предметов окружающего мира, разви­тие пространственных представлений и изобразительных уме­ний, приобретение навыков геометрических построений.


Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.


  1   2   3   4   5   6   7   8   9   ...   12