|
8. Системы уравнений (30 ч)
| Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое — второй степени. Примеры решения систем нелинейных уравнений.
Решение текстовых задач алгебраическим способом.
| Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными.
Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.
Решать системы двух уравнений с двумя переменными, указанные в содержании.
Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.
| 9. Неравенства (20 ч)
| Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.
Системы линейных неравенств с одной переменной
| Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств в ходе решения задач.
Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных неравенств. Решать квадратные неравенства, используя графические представления
| 10. Зависимости между величинами (15 ч)
| Зависимость между величинами.
Представление зависимостей между величинами в виде формул. Вычисления по формулам.
Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.
Обратная пропорциональная зависимость: задание формулой,> коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.
Решение задач на прямую пропорциональную и обратную пропорциональную зависимости
| Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.
Распознавать прямую и обратную пропорциональные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)
| 11. Числовые функции (35 ч)
| Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.
График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.
Графики простейших нелинейных уравнений (парабола, гипербола, окружность).
Графическая интерпретация системы уравнений с двумя переменными
Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.
Примеры графиков зависимостей, отражающих реальные процессы.
Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.
Линейная функция, ее график и свойства.
Квадратичная функция, ее график и свойства.
Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у = k/х, у = √х, у = \х\
| Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.
Использовать функционально-графические представления для решения и исследования уравнений и систем
Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.
Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.
Моделировать реальные зависимости с помощью формул и графиков. Интерпретировать графики реальных зависимостей.
Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.
Использовать компьютерные программы для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.
Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций вида у = кх, у = kх + b, y=√х, у = ах , у=ах2+с, у = ах2 + bх+с, в зависимости от значений коэффициентов, входящих в формулы.
Строить графики изучаемых функций; описывать их свойства
| 12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)
| Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых
п- членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты
| Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.
Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если выписаны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости.
Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.
Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.
Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)
| 13. Описательная статистика (10 ч)
| Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения,
размах, дисперсия. Репрезентативные и нерепрезентативные выборки
| Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.
Организовывать информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.
Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах, дисперсию числовых наборов.
Приводить содержательные примеры использования средних и дисперсии для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон
| 14. Случайные события и вероятность (15 ч)
| Понятие о случайном опыте и случайном событии. Элементарные события. Частота случайного события. Статистический подход к понятию вероятности. Несовместные события. Формула сложения вероятностей. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности
| Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.
Приводить примеры достоверных и невозможных событий. Объяснять значимость маловероятных событий в зависимости от их последствий.
Решать задачи на нахождение вероятностей событий.
Приводить примеры противоположных событий. Использовать при решении задач свойство вероятностей противоположных событий
| 15. Элементы комбинаторики (8 ч)
| Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал
| Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.
Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.)
Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.
Решать задачи на вычисление вероятности с применением комбинаторики
| 16. Множества. Элементы логики (7 ч)
| Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна.
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна.
Понятие о равносильности, следовании, употребление логических связок если то в том и только том случае. Логические связки и, или
| Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств, разность множеств. Приводить примеры несложных классификаций.
Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.
Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы.
Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.
Конструировать математические предложения с помощью связок если то в том и только том случае, логических связок и, или
| Резерв времени 10 ч
| ГЕОМЕТРИЯ 7-9 классы (210 ч)
| 1. Прямые и углы (20 ч)
| Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.
Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку
| Формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла.
Распознавать на чертежах, изображать, формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку.
Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек.
Формулировать аксиому параллельных прямых.
Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.
Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи
| 2. Треугольники (65 ч)
| Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.
Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.
Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников; теорема косинусов и теорема синусов.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений
| Распознавать на чертежах, формулировать определения, изображать прямоугольный, остроугольный, тупоугольный, равнобедренный, равносторонний треугольники; высоту, медиану, биссектрису, среднюю линию треугольника.
Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.
Объяснять и иллюстрировать неравенство треугольника.
Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.
Формулировать определение подобных треугольников.
Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.
Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.
Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0° до 180 Выводить формулы, выражающие функции углов от 0° до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение функции угла по одной из его заданных функций. Формулировать и доказывать теоремы синусов и косинусов.
Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.
Исследовать свойства треугольника с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи
| 3. Четырехугольники (20 ч)
| Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.
Прямоугольник, теорема о равенстве диагоналей прямоугольника.
Ромб, теорема о свойстве диагоналей.
Квадрат.
Трапеция, средняя линия трапеции; равнобедренная трапеция
| Распознавать, формулировать определение и изображать параллелограмм, прямоугольник, квадрат, ромб, трапецию, равнобедренную и прямоугольную трапеции, среднюю линию трапеции.
Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.
Исследовать свойства четырехугольников с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических
шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи
| 4. Многоугольники (10 ч)
| Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника
| Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.
Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.
Исследовать свойства многоугольников с помощью компьютерных программ.
Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи
| 5. Окружность и круг (20 ч)
| Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.
Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника! Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.
Вписанные и описанные окружности правильного многоугольника.
Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника
| Формулировать определения понятий, связанных с окружностью, секущей и касательной к окружности, углов, связанных с окружностью.
Формулировать и доказывать теоремы об углах, связанных с окружностью.
Изображать, распознавать и описывать взаимное расположение прямой и окружности.
Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника.
Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.
Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи.
| 6. Геометрические преобразования (70 ч)
| Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии
| Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.
Исследовать свойства движений с помощью компьютерных программ.
Выполнять проекты по темам геометрических преобразований на плоскости.
| 7. Построения с помощью циркуля и линейки (5 ч)
| Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей
| Решать задачи на построение с помощью циркуля и линейки.
Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры, доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)
| 8. Измерение геометрических величин (25 ч)
| Длина отрезка. Длина ломаной. Периметр многоугольника.
Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Длина окружности, число я; длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними; через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.
| Объяснять и иллюстрировать понятие периметра многоугольника.
Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.
Формулировать и объяснять свойства длины, градусной меры угла, площади.
Формулировать соответствие между величиной центрального угла и длиной дуги окружности.
Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.
Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.
Находить площадь многоугольника разбиением на треугольники и четырехугольники.
Объяснять и иллюстрировать отношение площадей подобных фигур.
Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи -
| 9. Координаты (10 ч)
| Декартова координата на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности
| Объяснять и иллюстрировать понятие декартовой системы координат.
Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.
Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства
| 10. Векторы (10 ч)
| Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов
| Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.
Вычислять длину и координаты вектора.
Находить угол между векторами.
Выполнять операции над векторами.
Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства
| Резерв времени 20 ч
| |
|
|