ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ В результате изучения математики на базовом уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
вычислять производные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: Уравнения и неравенства
уметь
решать рациональные, тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
построения и исследования простейших математических моделей;
Формы контроля уровня достижений учащихся
и критерии оценки знаний, умений и навыков
Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
Основными формами проверки знаний и умений учащихся по математике являются письменные работы и устный опрос. Основными видами письменных работ являются: упражнения, составления схем и таблиц, текущие письменные самостоятельные (обучающие и проверочные) работы, лабораторные работы, тесты, итоговые контрольные работы и т.п. При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.
Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе. К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; небрежное выполнение чертежа. Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочет.
Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач. Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью. Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно записанное решение.
Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.
При выставлении четвертной, полугодовой, триместровой оценки учащегося учитывается его успешность на протяжении всего периода подлежащего аттестации. При выставлении годовой оценки учитываются достижения учащегося за весь период аттестации.
Критерии ошибок:
К грубым ошибкам относятся ошибки, которые
обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;
неумение выделить в ответе главное, неумение делать выводы и обобщения, неумение пользоваться первоисточниками, учебником и справочниками.
К негрубым ошибкам относятся:
потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;
допущенные в процессе списывания числовых данных (искажения, замена), нарушения в формулировке вопроса (ответа).
К недочетам относятся:
описки, недостаточность или отсутствие пояснений, обоснований в решениях,
небрежное выполнение записей, чертежей, схем, графиков;
орфографические ошибки, связанные с написанием математических терминов.
Оценка устных ответов учащихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой;
изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу.
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при изложении теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Для речевой культуры учащихся важны и такие умения, как умение слушать и принимать речь учителя и одноклассников, внимательно относится к высказываниям других, умение поставить вопрос, принимать участие в обсуждении проблемы и т.п.
Оценка письменных работ учащихся по математике
Отметка «5» ставится, если:
работа выполнена верно и полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
выполнено без недочетов не менее 3/4 заданий.
Отметка «3» ставится, если:
допущены более одной ошибки или более трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме; без недочетов выполнено не менее половины работы.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере;
правильно выполнено менее половины работы
Отметка «1» ставится, если:
работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учебно-методический комплект
Мордкович. А.Г. Алгебра и начала анализа. 10 –11 кл. Учебник для общеобразоват. учреждений. – М.: Мнемозина, 2003
Мордкович. А.Г. и др. Алгебра и начала анализа. 10 –11 кл. Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2003 год
Мордкович. А.Г. Алгебра и начала анализа. 10 –11 кл. Методическое пособие для учителя. – М.: Мнемозина, 2003
Список литературы.
для учителя:
Мордкович А.Г.. Алгебра и начала анализа. 10-11 класс. Учебник, - М.: Мнемозина, 2010.
Мордкович А.Г.. Алгебра и начала анализа. 10-11 класс. Задачник, - М.: Мнемозина, 2010.
Мордкович А.Г. Алгебра. 10-11.Методическое пособие для учителя.
для учащихся:
А.Г. Мордкович. Алгебра и начала анализа. 10-11 класс. Учебник, - М.: Мнемозина, 2010.
А.Г. Мордкович. Алгебра и начала анализа. 10-11 класс. Задачник, - М.: Мнемозина, 2010.
Дополнительный материал 1.Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004
2.Тематическое приложение к вестнику образования №4, 2005 г.
3.Программы для общеобразовательных учреждений. Математика 7 – 9 кл., М.: Просвещение, 2007 г.
Газета «Математика», №11, 2006 г. Приложение к газете «Первое сентября» Тематическое планирование и контрольные работы
4.Кононов А.Я. Задачи по алгебре для 10 – 11 кл.
Интернет-ресурсы
http://www.edu.yar.ru
http://www.exponenta.ru
http://school-collection.edu.ru
http://school-collection.edu.ru
http://www.edu.yar.ru
https://pedsovet
Условные обозначения к календарно-тематическому планированию:
Тип урока
| Форма контроля
| УОНМ
| Урок ознакомления с новым материалом
| УС
| Устный счёт
| УЗИ
| Урок закрепления изученного
| УО
| Устный опрос
| УПЗУ
| Урок применения знаний и умений
| ФО
| Фронтальный опрос
| УОСЗ
| Урок обобщения и систематизации знаний
| СР
| Самостоятельная работа
| УПКЗУ
| Урок проверки и коррекции знаний и умений
| ИЗ
| Индивидуальное задание
| КУ
| Комбинированный урок
| МТ
| Математический тест
| УКЗ
| Урок коррекции знаний
| МД
| Математический диктант
|
|
| ПР
| Практическая работа
|
|
| КР
| Контрольная работа
| |