Главная страница

Мбоу новодмитриевская сош «Рекомендована»



НазваниеМбоу новодмитриевская сош «Рекомендована»
страница2/7
Дата13.02.2016
Размер0.59 Mb.
ТипТематическое планирование
1   2   3   4   5   6   7

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ



В результате изучения математики на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;


Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;


Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;


Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;


КОНТРОЛЬ РЕАЛИЗАЦИИ ПРОГРАММЫ
Стартовый контроль:



1. Записать в виде десятичной дроби:

а) ; б) .
2. Записать в виде обыкновенной дроби:

а) 0,84; б) 5,01(6).
3. Упростить:

а) ; б) ; в) .
4. Решить уравнение:

а) ; б) ; в) .
5. Решить неравенство:

а) ; б) 2х – 2х-4 < 15.
6. Вычислить:

а) ; б) .
7. Решить уравнение:

а) ; в) ;

б) log5log4log2x = 0; г) log4(x+3) – log4(x–1) = 2 – log48.
8. Решить неравенство:

а) ; б) .

9. Решить уравнение:

а) ; б) .
10. Упростить:

а) ; б) .
11. Вычислить:

а) ; б) .
12. Решить уравнение:

а) 3cos2 х + 10cos x + 3=0; б) sin2 x + 2sinx cosx = 3cos2 x.




Итоговый контроль:
Часть А.

А1. Вычислите: .

А2. Упростите выражение: .
А3. Упростите выражение: .

А4. Найдите значение выражения: .

А5. Укажите промежуток, содержащий корень уравнения: .
А6. Какому промежутку принадлежит корень уравнения:

?
А7. Укажите множество решений неравенства: .
А8. Вычислите значение производной функции в точке х0=2.
А9. Найдите область определения функции: .
А10. Найдите множество значений функции: .
А11. Решите уравнение: .
А12. Через точку графика функции с абсциссой х0=1 проведена касательная. Найдите тангенс угла наклона этой касательной к оси абсцисс.


Часть В. Запишите решение.

В1. Упростите выражение: .
В2. Найдите сумму всех действительных корней уравнения:

.
В3. Найдите площадь фигуры, ограниченной линиями: у = 3х(х2 – 3х + 3), у = 3х2.

В4. Найдите максимальное значение функции у = log0,4(3х2 – (5а + 4)х + 49), если известно, что оно достигается в точке с абсциссой 4.


Содержание учебного материала

Повторение курса алгебры 10 класса – 5 часов.

Основная цельформирование представлений о целостности и непрерывности курса алгебры 10 класса, овладение умением обобщения и систематизации знаний, учащихся по основным темам курса алгебры 10 класса; развитие логического, математического мышления и интуиции, творческих способностей  в области математики.

Глава 1. Тригонометрические функции - 7 часов.

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции y=cosх и её график. Свойства функции y=sinх и её график. Свойства функции y=tgх и её график. Обратные тригонометрические функции.

Основная цель – изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы sin(-x)=-sin x и cos(-x)=cos x выражают свойства нечетности и четности функций y=sin x и y=cos x соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции y=cos x.С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

На базовом уровне обратные тригонометрические функции даются в ознакомительном плане. Рекомендуется также рассмотреть графики функции y=│cos х│, y= а+cos х, y= cos (х+а), y= cos ах, y= а cos х, где а – некоторое число.

Глава 2. Производная и её геометрический смысл - 13 часов.

Предел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель – показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.

Глава 3. Применение производной к исследованию функций - 11 часов.

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

Основная цель (базовый уровень) – является демонстрация возможностей производной в исследовании свойств функций и построении их графиков и применение производной к решению прикладных задач на оптимизацию.

Глава 4 . Первообразная и интеграл - 10 часов.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Применение интегралов для решения физических задач.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций. Знакомство с простейшими дифференциальными уравнениями.

Глава 5. Комбинаторика - 6 часов.

Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель – ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Глава 6. Элементы теории вероятностей - 6 часов.

В программу включено изучение лишь отдельных элементов теории вероятностей. При этом введению каждого понятия предшествует неформальное объяснение, раскрывающее сущность данного понятия, его происхождение и реальный смысл. Так вводятся понятия случайных, достоверных и невозможных событий, связанных с некоторым испытанием; определяются и иллюстрируются операции над событиями. Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель – сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Методическая литература

  1. Федеральный перечень учебников, рекомендуемых Министерством образования Российской Федерации к использованию в общеобразовательном процессе в общеобразовательных учреждениях на 2010 – 2011 учебный год.

  2. Программы для общеобразовательных школ, лицеев и гимназий. Математика. Составители: Г. М. Кузнецова, Н. Г. Миндюк. М.: Дрофа, 2004 г.

  3. Контрольные работы по алгебре и началам анализа для 10 – 11 классов общеобразовательных школ. / А.Г. Мордкович, Е.Е. Тульчинская. / М: Мнемозина, 2006, 61с.

  4. Б. Г. Зив. Дидактические материалы. Алгебра и начала анализа. 11 класс. М. И. Шабунин. Алгебра и начала анализа. Дидактические материалы для 10-11 классов. А. П. Ершова. Самостоятельные и контрольные работы. Алгебра 10-11 класс.

  5. Тесты. Алгебра и начала анализа, 10 – 11. / П.И. Алтынов. Учебно-методическое пособие. / М.: Дрофа, 2000. – 96с.

  6. Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов / сост. Г.И. Ковалева, Т.И. Бузулина, О.Л. Безрукова, Ю.А. Розка – Волгоград: Учитель, 2010;

  7. Ивлев Б.И., Саакян С.И., Шварцбург С.И., Дидактические материалы по алгебре и началам анализа для 11 класса, М., 2000;

  8. Лукин Р.Д., Лукина Т.К., Якунина И.С., Устные упражнения по алгебре и началам анализа, М.1989;

  9. Шамшин В.М. Тематические тесты для подготовки к ЕГЭ по математике, Феникс, Ростов-на-Дону,2004;

  10. Ковалёва Г.И. Учебно-тренировочные тематические тестовые задания с ответами по математике для подготовки к ЕГЭ, ч. I,II,III, Волгоград,2004;

  11. Студенецкая В.Н. Математика: система подготовки учащихся к ЕГЭ, Волгоград,2004;

  12. Денищева Л. О. Алгебра и начала анализа. 10 - 11 класс: Тематические тесты и зачеты для общеобразовательных учреждений. /Л. О.Денищева и др.: под ред. А. Г. Мордковича. – М.: Мнемозина, 2005г./

  13. Единый государственный экзамен: Математика: Репетитор / Кочагин В. В. и др. – М.: Просвещение, Эксмо, 2006г./

  14. Алгебра и начала анализа: Учеб. для 11 кл. общеобразоват. учреждений /Ю.М. Колягин и др.; Под. ред. А.Н.Тихонова. – М.: Просвещение, 2009.

  15. Методические рекомендации к учебникам математики для 10-11 классов, приложение «Математика» №16-2006год к газете «Первое сентября»;

Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет – ресурсов:

  • Министерство образования РФ: https://ed.gov.ru/ ; https://edu.ru

  • Тестирование online: 5 - 11 классы: https://kokch.kts.ru/cdo

  • Сеть творческих учителей: https://it-n.ru/communities.aspx?cat_no=4510&tmpl=com ,

  • Сайт Александра Ларина (подготовка к ЕГЭ): https://alexlarin.narod.ru/ege.html

  • Новые технологии в образовании: https://edu.secna.ru/main

  • Путеводитель «В мире науки» для школьников: https://uic.ssu.samara.ru

  • Мегаэнциклопедия Кирилла и Мефодия: https://mega.km.ru

  • сайты «Энциклопедий»: http://www.rubricon.ru/; http://www.encyclopedia.ru

  • сайт для самообразования и он-лайн тестирования: http://uztest.ru/

  • досье школьного учителя математики: https://mathvaz.ru/
1   2   3   4   5   6   7