Главная страница

Калитвянская Нина Викторовна (фио) программа разработана на основе Авторская программа



НазваниеКалитвянская Нина Викторовна (фио) программа разработана на основе Авторская программа
страница1/9
Дата13.02.2016
Размер1.08 Mb.
ТипПрограмма
  1   2   3   4   5   6   7   8   9


ст. Селивановская Милютинский район

Муниципальное бюджетное общеобразовательное учреждение

Селивановская средняя общеобразовательная школа

«Утверждаю»
Директор МБОУ Селивановской СОШ

Приказ от 30.08.2014 года

Подпись руководителя_____________

/Олейник Ольга Александровна/ ФИО
Печать


РАБОЧАЯ ПРОГРАММА

по алгебре ________________________________

(указать учебный предмет, курс)

Уровень общего образования (класс)

основное общее образование 9 класс_________________

(начальное общее, основное общее, среднее общее образование с указанием класса)

Количество часов_____136___

Учитель____Калитвянская Нина Викторовна__________________________________

(ФИО)

Программа разработана на основе

Авторская программа Ю.Н. Макарычева в сборнике «Программы общеобразовательных учреждений. Алгебра 7-9 классы» /сост. Т.А. Бурмистрова, изд. - М.: Просвещение, 2009 год___________________

(указать примерную программу/программы, издательство, год издания при наличии)



Рабочая программа

по алгебре

(9 класс)

2014-2015 уч.год

Программу составила:

учитель математики первой категории

Калитвянская Нина Викторовна

Структура программы

Программа содержит следующие разделы:

  1. Пояснительная записка, в которой конкретизируются общие цели основного общего образования с учетом специфики учебного предмета.

  2. Общая характеристика учебного предмета.

  3. Место учебного предмета в учебном плане.

  4. Содержание учебного предмета.

  5. Тематическое планирование.

  6. Календарно-тематическое планирование.

  7. Учебно-методическое и материально-техническое обеспечение образовательного процесса.

  8. Результаты освоения учебного предмета и система их оценки.



  1. Пояснительная записка

Рабочая программа по алгебре для 9 класса разработана на основе примерной программы основного общего образования по математике с учетом требований федерального компонента Государственного образовательного стандарта основного общего образования по математике с использованием рекомендаций авторской программы Ю.Н. Макарычева. (Программа по алгебре, авт. Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, в сборнике «Алгебра. Программы общеобразовательных учреждений. 7-9 классы. Составитель Т.А.Бурмистрова, изд. «Просвещение», 2009 г.)

В рабочей программе учтены идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России, программы развития и формирования универсальных учебных действий, которые обеспечивают формирование российской гражданской идентичности, овладение ключевыми компетенциями, составляющими основу для саморазвития обучающихся, коммуникативных качеств личности.

Нормативными документами для составления рабочей программы являются:

  1. Федеральный Закон «Об образовании в Российской Федерации» (от 29.12.2012 №273-ФЗ).

  2. Федеральный государственный образовательный стандарт основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;

  3. Концепция долгосрочного социально-экономического развития Российской Федерации на период до 2020 года. Распоряжение Правительства Российской Федерации от 17.11.2008 №1662-р.

  4. Постановление Главного государственного санитарного врача РФ от 29.12.2010 №189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».

  5. Приказ Минобразования России от 05.03.2004 №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования».

  6. Приказ Минобразования России от 09.03.2004 №1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования».

  7. Приказ Минобрнауки России от 31.03.2014 г №253 «Об утверждении федеральных перечней учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».

  8. Приказ Министерства общего и профессионального образования РО от 30.04.2014 г №263 «Об утверждении примерного учебного плана для образовательных учреждений Ростовской области на 2014-2015 учебный год».

  9. Учебный план МБОУ Селивановской СОШ на 2014-2015 учебный год.

  10. Примерные программы по учебным предметам (Математика. 5-9 классы: проект. – 3-е изд. Перераб. - М.: Просвещение, 2011. (Стандарты второго поколения);

  11. Программа по алгебре, авт. Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, в сборнике «Алгебра. Программы общеобразовательных учреждений. 7-9 классы. Составитель Т.А.Бурмистрова, изд. «Просвещение», 2009 г.)

  12. Список учебников ОУ, соответствующий Федеральному перечню учебников, утвержденных, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях на 2014-2015 уч. год, реализующих программы общего образования.

  13. Локальный акт МБОУ Селивановская СОШ о рабочей программе.

Программа соответствует учебнику «Алгебра» для 9 класса общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н.

В ходе преподавания алгебры в 9 классе следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

• решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих

поиска пути и способов решения;

• исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

• ясного, точного, грамотного изложения своих мыслей в устной и письменной форме, использования различных языков математики (словесного, символического, графического), свободного перехода

с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

• проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

• поиска, систематизации, анализа и классификации информации, использования разнообразных

информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Цели курса

Изучение математики в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития

    • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

    • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

    • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

    • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

    • развитие интереса к математическому творчеству и математических способностей.

  2. В метапредметном направлении

    • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

    • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

    • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

  3. В предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


Задачи предмета:

  1. развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  2. овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  3. изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  4. получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  5. развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  6. сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.


Изучение математики в 9 классе направлено на формирование следующих компетенций:

  • учебно-познавательной;

  • ценностно-ориентационной;

  • рефлексивной;

  • коммуникативной;

  • информационной;

  • социально-трудовой.


Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе различных научно-методических подходов), дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).


  1. Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 9 класса расширяются сведения о свойствах функций, познакомить обучающихся со свойствами и графиком квадратичной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида; знакомятся обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.
Ценностные ориентиры содержания учебного предмета

Исторически сложилось две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.

Без базовой математической подготовки невозможна постановка образования современного человека.

В школе математика служит опорным предметом для изучения смежных дисциплин.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

  1. Место учебного предмета «Алгебра -9» в учебном плане

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам и темам курса. Она рассчитана на 136 часов из расчета 4 учебных часа в неделю.
Количество часов по разделам:


Раздел

Количество часов в рабочей программе

Контрольные работы

1. Вводное повторение

4

Входная контрольная работа

2. Квадратичная функция

29

№1, №2

3. Уравнения и неравенства с одной переменной

20

№3

4. Уравнения и неравенства с двумя переменными

20

№4

5. Арифметическая и геометрическая прогрессии

15

№5, №6

6. Элементы комбинаторики и теории вероятностей

16

№7

8. Итоговое повторение курса алгебры 9 класса.

32

№8

Итого

136

9



  1. Содержание учебного предмета

Повторение.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.

Глава 1. Квадратичная функция.

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и неравенства с одной переменной.

Целые уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0. Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Глава 3. Уравнения и неравенства с двумя переменными.

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Цель: выработать умения решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Глава 4. Прогрессии.

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Глава 5. Элементы комбинаторики и теории вероятностей.

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).



  1   2   3   4   5   6   7   8   9