Главная страница

Забельникова Ольга Васильевна. Место работы и должность: мбоу-сош №4 города Тулы, учитель математики. Образование: высшее, тгпи им. Л. Н. Толстого, 1982г., диплом



Скачать 464.62 Kb.
НазваниеЗабельникова Ольга Васильевна. Место работы и должность: мбоу-сош №4 города Тулы, учитель математики. Образование: высшее, тгпи им. Л. Н. Толстого, 1982г., диплом
страница1/3
Дата27.02.2016
Размер464.62 Kb.
ТипДиплом
  1   2   3



БАЗОВАЯ МОДЕЛЬ

обобщенного педагогического опыта

учителя математики

МУНИЦИПАЛЬНОГО БЮДЖЕТНОГО ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ СРЕДНЕЙ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ № 4

с углубленным изучением отдельных предметов Советского района г. Тулы

Забельниковой Ольги Васильевны

Тема опыта:

Индивидуальный подход к учащимся в процессе обучения

математике в 5- 11 классах.

Идея опыта:

Повышение качества знаний учащихся разноуровневого класса и формирование у них устойчивого интереса к математике через

дифференциацию обучения.

ИПМ 1.(информационно-педагогический модуль)

Сведения об авторе.

Забельникова Ольга Васильевна. Место работы и должность: МБОУ-СОШ № 4 города Тулы, учитель математики. Образование: высшее, ТГПИ им. Л.Н. Толстого, 1982г., диплом ЗВ № 637244 по специальности «математика и физика». Квалификация: учитель математики и физики. Стаж работы: 28 лет. Учитель высшей квалификационной категории.

ИПМ 2. Условия формирования опыта.

Решающее влияние на формирование опыта оказали:

1. Дифференцированное обучение, осуществляемое в МБОУ-СОШ № 4 с 8 класса по
направлениям:

  • гуманитарное;

  • физико-математическое;

  • химико-биологическое;

В школе, в параллели 8-х классов, ежегодно формируются также 1-2 обычных класса из детей, не прошедших отбор в профильные классы или не пожелавших в них обучаться.

  1. Изучение по данной проблеме публикаций в журнале «Математика в школе», в газете «Математика» и другой методической литературы.

  2. Работа по учебному комплекту под редакцией Г.Ф. Дорофеева, А.Г. Мордковича.

ИПМ 3. Теоретическая интерпретация опыта.

Актуальность опыта.

Основное требование общества к современной школе - всестороннее внимание к личности ребенка, создание условий для ее полноценного развития, возможности самореализации.

Индивидуальный подход в обучении помогает учителю решать задачу работы с «разными» детьми, дает возможность «слабым» приобрести уверенность в себе, а уровень «сильных» поднять еще выше.

В действительности, обществу не нужно, чтобы все превосходно знали математику. Более важным является то, чтобы большинство владело математической культурой, элементарными математическими навыками, необходимыми в быту и на производстве, а какая-то часть знала ее на гораздо более высоком уровне.
Дифференциация обучения помогает решить конфликт, сложившийся в массовой школе, а именно: попытка школы обучать всех на одинаковом уровне и невозможность каждого ребёнка его (уровень) освоить.

Теоретическая база опыта.

В основе опыта лежат идеи:

1. Кларина М.В., доктора педагогических наук, который рассмаривал концеп-
цию «обучения полного усвоения». Она базируется па исследованиях амери-
канских психологов Дж, Кэррола и Б.С, Блума, изучавших способности уча-
щихся по обучению различным предметам, когда время на изучение материала
не ограничено. По результатам наблюдений были выделены группы:

- малоспособные учашиеся (примерно 5%)- не в состоянии достичь наме-

ченного уровня знаний и умений даже при большой продолжительности обучения;

  • талантливые (примерно 5%)- по силам то, с чем не могут справиться остальные, могут учиться в высоком темпе;

  • обычные (примерно 90%)- способности к усвоению знаний и умений определяются затратами учебного времени.

2. Доктора психологических наук Якиманской И.

  • трактует дифференцированное обучение как создание наиболее благоприятных условий для формирования личности ребёнка, индивидуализации обучения;

  • осуществление дифференцированного обучения невозможно без знания индивидуальности ребёнка с присущими ему личностными особенностями:

  • каждый ребёнок уникален, он обладает определённым уровнем психического развития, с самого начала школьной жизни ребёнка необходимо создавать среду, позволяющую ребенку проявить себя;

  • индивидуализация не результат дифференциации, а наоборот, дифференциация способствует индивидуализации обучения;

  • в целях развития индивидуализации следует использовать различные методы, дидактические материалы, позволяющие варьировать на едином базовом материале и дающие возможность ученику выбирать наиболее удобные типы заданий, способы работы;

  • учитель должен уделять постоянное внимание анализу и оценке способов проработки учеником программного материала, созданию условий для самостоятельного выбора способов работы, типов заданий, постоянно оценивать уровень, на котором находится ученик.

3. Рабунской Е. С, которая подчёркивала, что индивидуальный подход означает:

  • действенное внимание к каждому ученику, его творческой индивидуальности в условиях классно-урочной системы обучения по общеобразовательным учебным программам;

  • разумное сочетание фронтальных, групповых и индивидуальных занятий



для повышения качества обучения и развития каждого ребёнка

4. Исследования современных методистов-математиков (В,А.Оганесяна, В.Я.Саннинского и др.). Они подчёркивали, что:

  • роль, отводимая современной методикой математики учебной деятельности самих учащихся в процессе обучения, делает особенно актуальной проблему возможно более полной индивидуализации обучения в условиях коллективной деятельности;

  • недостаточная индивидуализация учебной работы школьников препятствует оптимальному развитию их способностей, влечёт снижение уровня знаний,

Проблема индивидуализации обучения математике имеет огромное значение для:

а) формирования интереса к математике;

б) осуществления эффективного обучения математике;

в) решения трудностей, возникающих у детей в процессе изучения математики.

Новизна опыта,

Для школы - в применении дифференцированных контрольных работ,оценке знаний умений и навыков учащихся(опыт представлен на ШМО учителей математики),

Для автора опыта:

  • в использовании карточек-тестов для слабоуспевающих;

  • карточек индивидуального опроса на местах и у доски;

  • дифференцированных контрольных работ;

  • тематических карточек-заданий для внеклассной работы: -дифференцированного домашнего задания.

Адресная направленность,

Данный опыт будет полезен;

  • учителям математики (особенно начинающим), так как даёт возможность быстро пролонгировать, как учащиеся с различной математической подготовкой поняли изучаемый материал и откорректировать пробелы в знаниях учащихся;

  • другим учителям-предметникам, так как предлагаемые методические приёмы могут быть использованы не только на уроках математики.

Область применения.

Опыт может применяться:

Трудоёмкость опыта,

Для реализации опыта требуется:

  • создание большого количества карточек и дидактических материалов для индивидуальной работы;

  • разработка дифференцированных контрольных работ по темам(для оптимизации учебного процесса они могут быть размножены на ксероксе);

  • постоянная работа по осуществлению контроля за усвоением учебного материала для возможности последующей коррекции знаний учащихся.




ИПМ 4. Дифференциация обучения как форма, обеспечивающая

индивидуальный подход к учащимся на уроках математики.

Основными целями индивидуального обучения математике автор опыта считает:

  1. повышение качества знаний учащихся путем использования и развития в обучении математике индивидуальных качеств личности;

  2. развитие познавательных интересов школьников, интереса к изучению математики;

  3. развитие интеллектуальных способностей и способностей к изучению математики у каждого школьника;

  4. развитие у учащихся навыков самостоятельной деятельности.

Для осуществления индивидуальной работы на уроках математики и во внеурочное время учитываю:

а) уровень обучаемости каждого ребенка, уровень развития его математического
го мышления;

б) наличие или отсутствие опыта самостоятельной работы у учащихся;

в) умение читать осознанно учебный текст.

В моем опыте рассматривается индивидуализация обучения математике в обычном разнородном (не профильном) классе Это направление осуществляется через внутриклассную индивидуальную работу посредством дифференциации учебных заданий. В своей работе использую дифференциацию заданий по различным уровням сложности.

В отличии от традиционной организации выполнения заданий но математике на различных этапах урока, дифференциация обучения предполагает самостоятельный выбор учащимися количества заданий и их уровня сложности.

ИПМ 5. Осуществление индивидуализации обучения математике на этапе ознакомления учащихся с новым материалом.

На этом этапе основными целями считаю:

  • введение в активный словарный запас учащихся какого-либо математического понятия;

  • установление свойств и признаков, отображённых в данном понятии;

  • установление алгоритма решения задач определённого вида,

Индивидуализация процесса обучения достигается:

1).Путём поэтапного, «дозированного», изложения информации: автор опыта предлагает учащимся самостоятельно, с помощью наводящих вопросов, находить ответ на исходный вопрос.

2), Установлением обратной связи, «пролонгацией» уровня усвоения учащимися изучаемого на уроке материала.
Средства организации обратной связи: - индивидуальные карточки-тесты самого низкого уровня сложности, (см, ИПМ 8.1-8.3.(Приложение)).

ИПМ 6. Индивидуализация обучения математике на этапе закрепления изученного материала,

Цели: - закрепить изученный материал;

- углубить и расширить знания умения и навыки школьников по изученной теме.

На данном этапе: - проверяется глубина и осмысленность

изученного материала;

- усиливается роль самостоятельной работы

учащихся.

Роль индивидуального подхода на этом этапе - активизация мыслительной деятельности учащихся.

Виды организации индивидуальной работы:

1). Самостоятельный поиск правильного ответа (устная работа)

Цель: - выявить уровень усвоения каждым учащимся программного материала, скорректировать его уже на уроке.

Сущность: - учащиеся выбирают один из 3-х предлагаемых вариантов ответа, поднимают табличку с его номером (1,2 или 3); - один из учеников поясняет, каким правилом, признаком и т.д. он руководствовался в выборе ответа.

Пример: 6 класс " Вычитание целых чисел и

Выполните действия Варианты ответа

I II III

-4-(-6) -10 2 -2

-4-6 2 -2 10

4-6 2 -3 10

4-(-6) 2 10 -10

0-7 -7 7 0

и т.д.

2). Работа по индивидуальным карточкам с ошибками в решении различного уровня сложности,
Цель: активизация процесса обучения, развитие внимательности, умения самостоятельно мыслить, (см. ИТТМ 8.4,( Приложение)).

3). Дифференцированные самостоятельные работы (на 15-20 мин.).

целы активизировать самостоятельность детей, помочь учащимся на начальном этапе работы над темой обнаружить пробелы в усвоении материала, ликвидировать их с помощью учителя.(см.ИПМ 9.2.(Приложение)).

ИПМ 7. Дифференцированный подход как форма, обеспечивающая индивидуализацию обучения на этапе проверки знаний, умений и навыков учащихся.

Проверяются как сами знания, так и умение учащихся их применять.

Разновидности проверки: - устный опрос учащихся;

- контрольная работа.

Дифференциация обучения на данном этапе дает большой выбор средств для организации индивидуальной работы.

Мною применяются;

а) индивидуальные разноуровневые карточки опроса учащихся
(см. ИПМ 8.5. и 8.6.( Приложение))

б) устный опрос по схеме ученик класс

Сущность: - перед ответом учащегося предупреждаю, чтобы остальные школьники готовили вопросы по излагаемому материалу и дополнительные вопросы по пройденным томам; - после ответа любому ученику предлагаю задать свой вопрос, в случае неправильного ответа на него, дать свой ответ.

в) разноуровневые самостоятельные работы контролирующего характера
(см. ИПМ 9.1 .(Приложение)).

г) дифференцированные контрольные работы
(см. ИПМ 10.1;10.2(Приложение)).

Условием повышения качества знаний учащихся является постоянный анализ уровня усвоения каждым учеником программного материала. Результаты анализа заносятся в специальный дневник.
Пример: Тема: «Неравенства второй степени с одной переменной»



Фамилия, Имя







ДАТА,

;ОЦЕНКА








8.10




12.10




15.10

И Т.Д.

п/п






















1.

Аввакумов

А.

4




4




4




2.

Бикиниев Д

.

3




н

3

3




3.

Ермакова И.

4




3




4




4.

Ермаков М.

2

3

н

3

2







И Т.Д.

Самостоятельная работа «Графический способ решения уравнений»

Дополнительные занятия

Метод интервалов

Дополнительные занятия

Дополнительные занятия

Контрольная работа

Оценивая успехи каждого ученика, сравниваю их с предшествующими результатами, показываю, что удается и над чем надо поработать.Эти рекомендации очень важны, так как адресованы конкретному ученику с учетом его индивидуальных особенностей.

ИПМ 8. Карточки для индивидуальной работы с учащимися на уроке.

Автором опыта для организации индивидуальной работы на уроке математики используются карточки, раечитапные на различные уровни развития учащихся (по П.Беспалько):

а) ученический - выполнение заданий по определенному предписанию.

б) алгоритмический - выполнение заданий, требующих репродуктивно-
алгоритмических действий, самостоятельно воспроизводя и применяя
нужную информацию.

в) эвристический - решение заданий требует от учащихся применения
знаний из других тем и разделов.
В зависимости от этапа работы над учебным материалом применяю:

1). Индивидуальные карточки-тесты уровня усвоения нового материала,

Цели: - осуществление обратной связи на уроке при изучении программного материала:

- форсирование работы отстающих дополнительными указаниями.

Виды: 1 .Карточки-тесты (см. ИПМ 8.1 -8.3( Приложение)).

2, Карточки с ошибкой в готовом решении (см. ИПМ 8.4,(Приложение)).

Разрабатываются накануне урока, несколько экземпляров одинакового содержания. Степень сложности заданий б карточке минимальная.

Адресная направленность - школьники с ученическим и алгоритмическим уровнем развития.

2).Индивидуальные карточки опроса учащихся на уроке.

цели: - контроль за усвоением программного материала;

  • активизация мыслительной деятельности учащихся;

  • активизация индивидуальной работы с учащимися; -увеличение количества опрашиваемых на уроке.

Работа с карточками расчитана на 10 мин. (примерно), проверяется сразу (ответы у учителя).

Критерий оценок зависит от заданий, предлагаемых ученику:

а) ученик сразу выбирает задание, оцениваемое определенным количеством
баллов (см. ИПМ 8.5( Приложение)).

б) ученик зарабатывает оценку путем накопления баллов: за первое задание 3
бала, решение каждого последующего добавляет еще балл

(см. ИПМ 8.6(Приложение)).

ИПМ 8.1, Индивидуальные карточки-тесты для 5 класса. (Приложение).

  1   2   3