Главная страница

Протокол №1 от Нурлатской шк №1 Исхаков Ф. Ф. «24» августа 2011г Сафина Х. Г. Приказ № от



НазваниеПротокол №1 от Нурлатской шк №1 Исхаков Ф. Ф. «24» августа 2011г Сафина Х. Г. Приказ № от
страница2/6
Дата12.02.2016
Размер0.71 Mb.
ТипПротокол
1   2   3   4   5   6
Глава 5. Элементы комбинаторики и теории вероятностей (13 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Глава IX, X. Векторы и метод координат (18 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Глава XI. Соотношения между сторонами и углами треугольника (11 часов)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Глава XII. Длина окружности и площадь круга ( 12 часов)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Глава XIII. Движения (8 часов)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Повторение(30 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 9 класса основной общеобразовательной школы.
Требования к уровню подготовки обучающихся в 9 классе

В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса математики 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;


Элементы логики, комбинаторики,
статистики и теории вероятностей


уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

ГЕОМЕТРИЯ

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.



Список литературы:

  1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).

  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263).

  4. Примерная программа для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004. – с. 86-91)

  5. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.

  6. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2004 – 2007 год.

  7. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2008.

  8. Уроки алгебры в 9 классе: кн. для учителя / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение, 2005— 2008.

  9. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2008.

  10. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2007г.


Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  2. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 9 классе- М.: «Вербум - М», 2000;

  3. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов - М : Просвещение», 1991;

  4. Нестандартные уроки алгебры. 8 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006;

  5. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;

  6. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2003;

  7. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.

  8. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Ф.Ф.Лысенко и др.– ЛЕГИОН «Ростов-на-Дону», 2010.

  9. Олимпиадные задания по математике. 9 класс / авт.-сост. С.П. Ковалёва. – Волгоград: Учитель,2007.





Название темы

Кол-во часов

Цели урока

Вид контроля. Измерители

Требования к уровню подготовки учащихся

Использование ЦОР

Дата проведения

По плану

фактически

Блок 1. Квадратичная функция (22ч)

Цель: расширить сведения о свойствах функций, ознакомить учащихся со свойствами

и графиком квадратичной функции

§ 1. Функции и их свойства (5ч)

1

Функция. Область определения и область значений функции

1


Рассмотреть понятие функции и способы её задания.

Вспомнить изученные ранее функции и их свойства.

С-1 (ДМ)

-уметь находить по значению аргумента значение функции и наоборот,-уметь находить область определения и область значения функции;-уметь строить более сложные графики функций




2.09




2

Функция. Область определения и область значений функции

1

С-2 (ДМ)

https://school-collection.edu.ru

Область определения и область значений функции

3.09




3

Свойства функций

1



Систематизация свойств функций и рассматривать их при исследовании любых функций и построение их графиков.

С-3 (ДМ)

-уметь определять нули функции, промежутки возрастания и убывания

https://school-collection.edu.ru

"Усвоение навыков и знаний по теме "Свойства функции"

3.09




4

Свойства функций

1

С-4 (ДМ)

-уметь определять нули функции, промежутки возрастания и убывания

5.09




5

Свойства функций

1

Тест №1 (УМК, П.И. Алтынов)

-уметь определять нули функции, промежутки возрастания и убывания

6.09




§ 2. Квадратный трехчлен (4 ч + 1ч. к/р)

6-7

Квадратный трёхчлен и его корни

2

Рассмотреть понятие квадратного трёхчлена, его корни, выделение квадрата двучлена.

С-5 (ДМ)

-уметь находить корни квадратного трехчлена

https://school-collection.edu.ru

Квадратный трехчлен

8.09

9.09




8

Разложение квадратного трёхчлена на множители

1


Обсудить разложение многочленов на линейные множители.




-уметь находить корни квадратного трехчлена;

-уметь раскладывать на множители квадратный трехчлен




10.09




9

Разложение квадратного трёхчлена на множители. Проверочная самостоятельная работа

1

С-6 (ДМ)




10.09




10

Контрольная работа №1 по теме: «Функции и их свойства. Квадратный трехчлен»

1

Проверка знаний учащихся с использованием разноуровневых вариантов.




Уметь применять изученную теорию при нахождении ООФ, ОЗФ, читать график, при разложении квадратного трехчлена на множители




12.09




§ 3. Квадратичная функция и ее график (8ч)

11-12

График функции у=ах2

2

Рассмотреть свойства и график простейшей квадратичной функции у=ах2

С-7 (ДМ)

-уметь строить график функции у=ах2;

-правильно читать график

https://school-collection.edu.ru

График квадратичной функции y=a(x - m) в квадрате

График квадратичной функции y=ax в квадрате + n

13.09

15.09




13-15

Графики функций у=ах2+n, у=а(x – m)2

3

Рассмотреть параллельный перенос графика функции.

С-8 (ДМ)

-уметь строить график функции, используя преобразования графиков

-знать алгоритм построения графика квадратичной функции;


16.09

17.09.

17.09




16

Построение графика квадратичной функции

1



Рассмотреть построения графика функции у=ах2+вх+с




-уметь находить координаты вершины параболы

-знать алгоритм построения графика квадратичной функции;

-уметь находить координаты вершины параболы

https://school-collection.edu.ru

Закрепление знаний и навыков по теме "Построение графика квадратичной функции"

19.09




17

Построение графика квадратичной функции

1

С-9 (ДМ)

20.09




18

Построение графика квадратичной функции

1

Тест № 2 (УМК)

22.09




§ 4. Степенная функция. Корень n – й степени (3ч + 1ч. к/р)

19

Функция у=хn

1

Рассмотреть свойства и график функции у=хn

С-10 (ДМ)

-знать свойства функции при n-четном и n-нечетном;

-уметь преобразовывать графики у=х2,у=х3 и с наиболее высокими степенями

https://school-collection.edu.ru

Нечетные функции

23.09




20

Корень n-й степени

1


Рассмотреть понятие корня натуральной степени n.

Рассмотреть определение и свойства степени с рациональным показателем.

С-11 (ДМ)

-знать таблицу степеней;

-уметь вычислять значения некоторых корней n-ой степени

https://school-collection.edu.ru

  Определение корня n-й степени

24.09




21

Степень с рациональным показателем

1




-уметь применять свойства степени с рациональным показателем при решении задач.

https://school-collection.edu.ru

Закрепление знаний по теме "Определение степени с дробным показателем"

24.09




22

Контрольная работа № 2: «Квадратичная функция. Степенная функция»

1

Проверка знаний учащихся с использованием разноуровневых вариантов.




-уметь выполнять построение квадратичной функции, уметь применять таблицу степеней, вычислять значения некоторых корней n-й степени




26.09




Блок 2. Векторы. Метод координат. (18 ч)

Цель: научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач

§ 1. Понятие вектора (2ч)

23

Понятие вектора. Равенство векторов.

1

ввести понятие вектора, его длины, коллинеарных и равных векторов; научить учащихся изображать и обозначать векторы, откладывать от любой точки плоскости вектор, равный данному.


Проверка задач самостоятельное решение

Сформировать у учащихся представление о векторе,

-уметь изображать, обозначать вектор, нулевой вектор;

-знать виды векторов




27.09




24

Откладывание вектора от данной точки.

1







29.09




§ 2. Сложение и вычитание векторов. (3ч)

25

Сумма двух векторов

1

ввести понятие суммы двух векторов; рассмотреть законы сложения векторов; научить строить сумму двух данных векторов, используя правило треугольника и параллелограмма.


ФО


Знать законы сложения, определение суммы, правило треугольника, правило параллелограмма, уметь строить вектор, равный сумме двух векторов, используя правила треугольника, параллелограмма, формулировать законы сложения




30.09





26

Сумма нескольких векторов. Вычитание векторов

1

ввести понятие суммы трех и более векторов; научить строить сумму двух и нескольких векторов, используя правило многоугольника; учить решать задачи.


СР № 33

ДМ (8 кл)

Знать понятие суммы двух и более векторов, уметь строить сумму нескольких векторов, используя правило прямоугольника, Уметь строить вектор , равный разности двух векторов, двумя способами

https://school-collection.edu.ru

Задача 763 б,г
1   2   3   4   5   6