Главная страница

Пояснительная записка При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии



Скачать 446.54 Kb.
НазваниеПояснительная записка При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии
страница1/3
Дата05.04.2016
Размер446.54 Kb.
ТипПояснительная записка
  1   2   3



Пояснительная записка

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Цели


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Тематическое планирование составлено к УМК С.М. Никольского и др. «Алгебра и начала анализа», 10 класс, М. «Просвещение», 2003 год на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в журнале «Математика в школе » №2, 2005.

Примерное поурочное планирование рассчитано на 2 часа в 1 полугодии и на 3 часа во 2 полугодии.
Тематическое планирование к учебнику С.М. Никольского и др.

«Алгебра и начала анализа» (базовый уровень 2,5ч в неделю, всего 88 часов).
Целые и действительные числа ( 7 часов).

Понятие действительного числа. Свойства действительных чисел. Множества чисел и операции над множествами чисел. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

Рациональные уравнения и неравенства (12 часа, из них контрольные работы – 1 час).

Рациональные выражения. Формула бинома Ньютона, свойства биноминальных коэффициентов, треугольник Паскаля.

Рациональные уравнения и неравенства, метод интервалов решения неравенств, системы рациональных неравенств.

Корень степени n (6 часов из них контрольные работы – 0часов)

Понятие функции, ее области определения и множества значении, графика функции. Функция y = xn, где nN, ее свойства и график. Понятие корня степени n>1 и его свойства, понятие арифметического корня.

Степень положительного числа (8 часов, из них контрольные работы – 1 час)

Понятие степени с рациональным показателем, свойства степени с рациональным показателем. Понятие о пределе последовательности. Существование предела монотонной и ограниченной. Бесконечная геометрическая прогрессия и ее сумма.
Число e. Понятие степени с действительным показателем. Свойства степени с действительным показателем. Преобразование выражений, содержащих возведение в степень. Показательная функция, ее свойства и график.

Логарифмы (5 часов).

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени, переход к новому основанию. Десятичный и натуральный логарифмы. Преобразование выражений, содержащих логарифмы.

Логарифмическая функция, ее свойства и график.

Простейшие показательные и логарифмические уравнения и неравенства методы их решения (9 часов, из них контрольные работы – 1 час).

Показательные и логарифмические уравнения и неравенства и методы их решения.

Синус и косинус угла и числа (6часов/ 6 часов).

Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла и действительного числа. Основное тригонометрическое тождество для синуса и косинуса. Понятия арксинуса, арккосинуса.

Тангенс и котангенс угла и числа (5 часов, из них контрольные работы – 1 час).

Тангенс и котангенс угла и числа. Основные тригонометрические тождества для тангенса и котангенса. Понятие арктангенса числа.

Формулы сложения (7 часов).

Синус, косинус и тангенс суммы и разности двух аргументов. Формулы приведения. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений.

Тригонометрические функции числового аргумента (5часов, из них контрольные работы – 1 час).

Тригонометрические функции, их свойства и графики, периодичность, основной период.

Тригонометрические уравнения и неравенства (7 часов, из них контрольные работы – 1 час).

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства.

Элементы теории вероятностей(4 часов, из них практические работы – 0 час).

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Повторение курса алгебры и математического анализа за 10 класс (4часов, из них контрольная работа– 0 часа).

  1   2   3