Главная страница

Рабочая программа по алгебре и началам анализа для 10 класса



Скачать 162.49 Kb.
НазваниеРабочая программа по алгебре и началам анализа для 10 класса
А. Г. Мордкович
Дата05.04.2016
Размер162.49 Kb.
ТипРабочая программа

МБОУ-Старокулаткинская СОШ №1 

Рабочая программа

по алгебре и началам анализа

для 10 класса

(профильный уровень)

автор учебник А. Г. Мордкович

4 часа в неделю

Учитель математики Умярова Р.А.
В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего (полного) общего образования на профильном уровне отводится 6 учебных часов в неделю всего 204 часа, из них на алгебру и начала анализа – 4 часа (136 часа), что соответствует учебному плану.

 

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по учебнику А.Г. Мордковича и др. «Алгебра и начала анализа»

10 класс (профильный уровень)

Статус документа

Тематическое планирование составлено к УМК А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа. 10 класс. Учебник профильного уровня на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, приведенного в учебнике. Программа составлена на основе документов:

  • Базисный учебный план общеобразовательных учреждений РФ, утвержденный приказом Минобразования РФ № 1312 от 9.03.2004г.

  • Федеральный компонент государственного образовательного стандарта, утвержденный приказом Минобразования РФ от 5.03. 2004 г. №1089.

  • Примерные программы, созданные на основе федерального компонента государственного образовательного стандарта.

  • Федеральный перечень учебников, утвержденный приказом от 7 декабря 2005 г. №302, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования.

  • Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта.


Современные тенденции по модернизации среднего образования направлены на создание в старшем звене школы классов различных профилей. Такие преобразования диктуются специальным заказом общества, который ставит перед школой задачу: дать учащимся полное среднее образование и помочь ему в профессиональном выборе.

Такой подход к обучению требует пересмотреть структуру построения учебного материала и его изложения, прежде всего, в старшей школе.

Разработанная программа представляет собой программу расширенного курса алгебры и начал анализа в 10 классе, на изучение которой отведено 136 ч.

Программы расширенного курса на федеральном уровне не разработаны, поэтому возникла необходимость их создания.


Структура документа

Примерная программа по математике представляет собой целостный документ, включающий 3 раздела:

1. пояснительную записку;

2. требования к уровню подготовки обучающихся;

3. основное содержание с примерным распределением учебных часов по основным разделам курса.
Содержание программы определено с учетом приоритета перехода на профильное обучение, подготовки к ЕГЭ. Для ОУ и классов, спрофилированных на естественно-математический, социально-экологический и, прежде всего, технологический, профили, данный расширенный курс отвечает как требованиям стандарта математического образования, так и требованиям КИМов ЕГЭ.
Цели

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.


С учетом уровневой специфики классов выстроена система учебных занятий, спроектированы цели, задачи, ожидаемые результаты обучения, что представлено в схематической форме ниже. Планируется использование новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно – тематического планирования, связанные с объективными причинами.

Основой целью является обновление требований к уровню подготовки выпускников в системе естественно математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса алгебры и начал анализа.
Основная задача - обеспечение прочного и сознательного овладения учащимися системой математических знаний и умений, достаточных для изучения сложных дисциплин и продолжение образования.

Программа составлена на принципе системного подхода к изучению математики. В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие

• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Место предмета в базисном учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 420 ч из расчета 6 ч в неделю (при этом предмет математика делится на алгебру и геометрию по следующей схеме: 1 вариант алгебра 4 часа, а геометрия 2 часа, 2 вариант – алгебра 5 часов, а геометрия 3 часа, 3 вариант: алгебра 6 часов, а геометрия 2 часа). При этом учебное время может быть увеличено до 12 уроков в неделю за счет школьного компонента с учетом элективных предметов. Данная программа рассчитана на 4 часа алгебры, т.е. 1 вариант.

Содержание обучения математике отобрано и структурировано на основе компетентностного подхода. В соответствии с этим в 5-11 классах формируются и развиваются ценностно-смысловая, общекультурная, учебно-познавательная, коммуникативная компетенции.
Общеучебные умения, навыки и способы деятельности
В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Для информационно-компьютерной поддержки учебного процесса предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера:

    1. CD «1С: Репетитор. Математика» (К и М);

    2. CD «АЛГЕБРА не для отличников» (НИИ экономики авиационной промышленности);

    3. «Математика, 5 - 11».

Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет – ресурсов:

  • Министерство образования РФ: https://informika.ru/; https://ed.gov.ru/ ; https://edu.ru/

  • Педагогическая мастерская, уроки в Интернет и многое другое: https://teacher.fio.ru

  • Новые технологии в образовании: https://edu.secna.ru/main/

  • Путеводитель «В мире науки» для школьников: https://uic.ssu.samara.ru/~nauka/

  • Мегаэнциклопедия Кирилла и Мефодия: https://mega.km.ru

  • сайты «Энциклопедий», например: http://www.rubricon.ru/ ; https://encyclopedia.ru/

Тематическое планирование составлено к УМК А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа. 10 класс. Учебник профильного уровня на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, приведенного в учебнике.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ 10 КЛАССНИКОВ


В результате изучения математики на профильном уровне ученик должен

знать / понимать:

– значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

– идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

– значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

– универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

– различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

– вероятностный характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

уметь:

– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;

– применять понятия, связанные с делимостью целых чисел при решении математических задач;

– проводить преобразование числовых и буквенных выражений.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

– практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Функции и графики

уметь:

– определять значение функции по значению аргумента при различных способах задания функции;

– строить графики изученных функций, выполнять преобразование графиков;

– описывать по графику и по формуле поведение и свойства функций;

– решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

– описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

уметь:

– находить сумму бесконечно убывающей геометрической прогрессии;

– вычислять производные элементарных функций, применяя правила вычисления производных, используя справочные материалы;

– исследовать функции и строить их графики с помощью производной;

– решать задачи с применением уравнения касательной к графику функции;

– решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

– решения прикладных задач, в том числе на наибольшие и наименьшие значения с применением аппарата математического анализа.
Уравнения и неравенства

уметь:

– решать тригонометрические уравнения;

– доказывать несложные неравенства;

– находить приближенные решения уравнений и их систем, используя графический метод;

– решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

– построения и исследования простейших математических моделей,

– анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ

  1. А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа (в 2-х частях). Ч.1: Учебник.

  2. А.Г Мордкович и др. Алгебра и начала анализа. Ч.2.: Задачник.

  3. А.Г Мордкович и др. Алгебра и начала анализа. Контрольные работы.

  4. А.Г. Мордкович, П.В. Семенов. Методическое пособие для учителя.

  5. Л.А. Александрова. Алгебра и начала анализа. Самостоятельные работы. /под ред. А.Г. Мордковича.

  6. Л.О. Денищева, Т.А. Корешкова. Алгебра и начала анализа. Тематические тесты и зачеты /под ред. А.Г. Мордковича.

СОДЕРЖАНИЕ КУРСА


Глава 1. Действительные числа.

§1. Натуральные и целые числа.

Делимость целых чисел. Деление с остатком. Сравнения. Признаки делимости. Простые и составные числа. НОД. НОК. Основная теорема алгебры Решение задач с целочисленными неизвестными.

§2. Рациональные числа.

Перевод бесконечной периодической десятичной дроби в обыкновенную

§3. Иррациональные числа.

Понятие иррационального числа

§4. Множество действительных чисел

Действительные числа. Числовая прямая. Числовые неравенства и их свойства. Числовые промежутки. Аксиоматика действительных чисел. Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

§5. Модуль действительного числа.

Контрольная работа №1.

§6. Метод математической индукции.

Глава 2. Числовые функции.

§7. Определение числовой функции и способы ее задания.

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами.

§17. Построение графика функции y = mf(x).

§18. Построение графика функции y = f(kx).

Преобразование графиков: параллельный перенос, симметрия относительно осей координат, симметрия относительно начала координат, симметрия относительно прямой y = x. Растяжение и сжатие вдоль осей координат. Построение графиков с модулем.

§8. Свойства функций.

Свойства функций: монотонность, четность и нечетность, выпуклость, ограниченность, непрерывность. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

§9. Периодические функции.

Периодичность функций.

§10. Обратная функция.

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной.

Контрольная работа №2.

Глава 3. Тригонометрические функции.

§11. Числовая окружность.

§12. Числовая окружность на координатной плоскости.

§13. Синус и косинус. Тангенс и котангенс.

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла.

§14. Тригонометрические функции числового аргумента.

Синус, косинус, тангенс, котангенс числа. Основные тригонометрические тождества.

§15. Тригонометрические функции углового аргумента.

§16. Функции y = sin x, y = cos x, их свойства и графики, периодичность, основной период.

Контрольная работа №3.

§19. График гармонического колебания.

§20. Функции y = tg x, y = ctg x, их свойства и графики.

§21. Обратные тригонометрические функции, их свойства и графики.

Глава 4. Преобразование тригонометрических выражений.

§24. Синус и косинус суммы и разности аргументов.

§25. Тангенс суммы и разности аргументов.

§26. Формулы приведения.

§27. Формулы двойного аргумента. Формулы понижения степени.

Синус и косинус двойного угла. Формулы половинного угла. Выражение тригонометрических функций через тангенс половинного аргумента.

§28. Преобразование суммы тригонометрических функций в произведение.

§29. Преобразование произведения тригонометрических функций в сумму. Преобразование тригонометрических выражений.

§30. Преобразование выражения Asin x + Bcos x к виду Csin (x + t)

§31. Простейшие тригонометрические уравнения, отбор корней в тригонометрических уравнениях .Методы решения тригонометрических уравнений: метод замены, однородные, метод вспомогательного угла.

Контрольная работа №4.

Глава 5. Тригонометрические уравнения.

§22. Методы решения тригонометрических уравнений: преобразование суммы в произведение и обратно, метод равенства одноименных функций, метод понижения степени.

Нестандартные методы решения тригонометрических уравнений.

Простейшие тригонометрические неравенства. Методы решения тригонометрических неравенств.

Контрольная работа №5.

Глава 6. Производная.

§37. Числовые последовательности

§38. Предел числовой последовательности.

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теоремы о пределах последовательностей. Переход к пределам в неравенствах.

§39. Предел функции.

Предел функции на бесконечность, правила вычисления пределов на бесконечность. Горизонтальные асимптоты. Предел функции в точке, правила вычисления предела функции в точке. Вертикальные и наклонные асимптоты. Понятие о непрерывности функции. Основные теоремы о непрерывных функциях.

§40. Определение производной.

Понятие о производной функции, физический и геометрический смысл производной.

§41. Вычисление производных.

Производные суммы, разности, произведения и частного. Производные основных элементарных функций.

§42. Дифференцирование сложной функции. Дифференцирование обратной функции.

Производные сложной и обратной функции.

§43. Уравнение касательной к графику функции.

Контрольная работа №6.

§44. Применение производной для исследования функций.

Применение производных при решении уравнений и неравенств.

§45. Построение графиков функций.

Применение производной к исследованию функций и построению графиков.

Вторая производная и ее физический смысл.

§46. Применение производной для отыскания наибольших и наименьших значений величин.

Использование производных при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений. Примеры использования производной для нахождения решения в прикладных, в том числе социально-экономических, задачах.

Контрольная работа №7.
СПИСОК ЛИТЕРАТУРЫ

1. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.

2. Методическое пособие для учителя Алгебра и начала анализа. / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2008.

3. Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного стандарта общего образования.

4. Мордкович А.Г. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 1: Учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2005.

5. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 2: Задачник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, Л.О. Денищева, Л.И. Звавич, Т.А. Корешкова, Т.Н. Мишустина, А.Р. Рязановский, П.В. Семенов; под ред. А.Г. Мордковича. – М.: Мнемозина, 2005.