|
Решение уравнений Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.
Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений.
Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным.
Координаты на плоскости Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса ордината точки. Примеры графиков, диаграмм.
Основна я цель — познакомить учащихся с прямоугольной системой координат на плоскости.
Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует
уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений.
Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.
Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.
Результатом выполнения упражнений на чтение графиков должны явиться умения свободно определять координаты отмеченных на координатной плоскости точек и изображать точки по заданным координатам.
Элементы статистики, комбинаторики и теории вероятностей.
Решение комбинаторных задач. Комбинаторное правило умножения. Эксперименты со случайными исходами.
Ос н о в н а я ц е л ь- развить умения решать комбинаторные задачи методом полного перебора вариантов, познакомить с приемом решения комбинаторных задач умножением.
Как и в 5 классе, продолжается решение задач путем систематического перебора возможных вариантов. Однако теперь учащиеся имеют дело с большим количеством элементов и в более сложных ситуациях. Здесь они знакомятся с кодированием как способом представления информации, упрощения записей.
Продвижением вперед является знакомство с комбинаторным правилом умножения. Термин « правило умножения» здесь не вводится и какое-либо формальное правило не предлагается. Учащиеся остаются на уровне содержательного подхода, основой действий по-прежнему служит дерево возможных вариантов, изображенное на бумаге или представленное мысленно.
Особенностью методики, принятой в данной системе учебников, является статистический подход к понятию вероятности: вероятность случайного события оценивается по его частоте при проведении достаточно большой серии экспериментов. Такой подход требует реального проведения опытов в ходе учебного процесса. Развитие представлений об экспериментах со случайными исходами, приобретение опыта в их проведении осуществляется при изучении данной темы.
11.Повторение. Решение задач.
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
Числа и вычисления
В результате изучения курса математики учащиеся должны:
правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной или обыкновенной дроби);
сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;
—выполнять арифметические действия с рациональными числами ; сочетать при вычислениях устные и письменные приемы;
составлять и решать пропорции, решать основные задачи на дроби, проценты;
округлять целые числа и десятичные дроби, производить прикидку результата вычислений.
Выражения и их преобразования
В результате изучения курса математики учащиеся должны:
—правильно употреблять термины «выражение», «числовое выражение», «буквенное выражение», «значение выражения», понимать их использование в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения». Уравнения
В результате изучения курса математики учащиеся должны:
понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики;
правильно употреблять термины «уравнение», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение »;
решать линейные уравнения с одной переменной.
Функции
В результате изучения курса математики учащиеся должны:
познакомиться с координатной плоскостью, знать порядок записи координат точек плоскости и их названий, уметь построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;
находить в простейших случаях значения функций, заданных графиком;
интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.
Геометрические фигуры и их свойства. Измерение геометрических величин
В результате изучения курса математики учащиеся должны:
распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, многоугольники, окружности, круги); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;
владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
решать задачи на вычисление геометрических величин (длин, углов, площадей), применяя изученные свойства фигур и формулы.
|
|
|