II. Устные упражнения.
№ 763 (в, г, д), 733, 768.
III. Тренировочные упражнения.
1. № 752 (с комментированием с места); № 756 (г), 755, 759.
2. Самостоятельная работа обучающего характера.
а) Площадь поля, имеющего форму прямоугольника, равна 54 га. Найдите ширину этого поля, если его длина 900 м.
б) Площадь земельного участка прямоугольной формы равна 12 а. Ширина участка 30 м. Найдите длину участка.
3. На повторение № 749 (а), 752, 756 (з, и).
IV. Итог урока.
«Догадайся».
Из 10 спичек составлен рисунок ключа (рис. 1). Переложите в нем 4 спички так, чтобы получить 3 квадрата
Ответ: Необходимо снять спички, изображающие кольцо ключа, и расположить их так, как показано на рис. 2
Рис. 1 Рис. 2
V. Домашнее задание. п. 19 повторить; № 770, 773, 777.
Урок № 72 Прямоугольный параллелепипед (п. 20)
Цели: сформировать понятие прямоугольного параллелепипеда, куба, научить находить ребра и грани, вычислять площадь поверхности прямоугольного параллелепипеда.
Оборудование: модели параллелепипеда, куба; плакат с числовым кроссвордом; индивидуальные листы с чертежом для итога урока.
Ход урока
I. Устные упражнения.
Отгадать числовой кроссворд (на столе листок для вычислений).
По горизонтали:
1) Наибольшее четырехзначное число; 2) 103 – 1; 3) Число, показывающее, во сколько раз 3 км 500 м больше 250 м; 6) Наибольшее трехзначное число, записанное цифрами 5, 7 и 9; 7) 88 + 77 + 55 + 44; 9) 10 35 20 + 2148; 10) Длина всего отрезка, если отрезок разделен на части 12 см, 15 см, 7 см и 14 см; 11) Число минут в двух уроках по 40 минут плюс 10 минут; 13) Число, запись которого римскими цифрами выглядит так: LXIV; 14) Количество сотен в числе 10000; 15) Неизвестное слагаемое в равенстве 71 + х = 96; 17) Число, которое в виде суммы разрядных слагаемых выглядит так: 4 1000 + 3 10; 18) Число, которое в 3 раза больше числа 203; 19) Самолет пролетел 2100 км за 3 часа. Чему равна его средняя скорость?
По вертикали:
2) Количество сантиметров в 95 м 48 см; 3) Число, на 1 большее, чем 42; 4) Число, которое в виде суммы разрядных слагаемых выглядит так: 4 1000 + 5 100 + 7 10 + 8; 5) Число, которое надо записать в рамочку: 1289071 тыс.; 7) 172; 8) Сколько понадобится трехлитровых банок, чтобы разлить в них 86 л сока? 10) 2002; 12) Сумма числа 5134 и числа, записанного теми же цифрами, но в обратном порядке; 14) Наибольшее из чисел, которое можно подставить в неравенство: + 10 < 148; 16) Неизвестный множитель в равенстве а 3 = 168; 17) Число 98 в 2 раза больше этого числа.
| 1
| 2
|
|
|
| 3
| 4
| 5
|
|
|
|
| 6
|
|
| 7
|
|
|
| 8
|
|
|
|
|
|
|
| 9
|
| 10
|
| 11
|
|
| 12
|
|
|
|
|
|
| 13
|
|
| 14
|
|
| 15
| 16
|
| 17
|
|
|
|
|
| 18
|
|
|
| 19
|
|
| II. Изучение нового материала.
П. 20 – объяснение учителя с использованием моделей в соответствии с учебником.
III. Закрепление.
1. Ответ на вопросы п. 20.
2. № 791, 790, 792 (а), 953.
3. На повторение: № 805, 808 (самостоятельно)
IV. Итог урока.
Каждому выдается лист с заданием:
1) Рассмотрите рисунок и впишите пропущенные слова.
На рисунке изображен прямоугольный_____________________.
Точка К – его _________________________________________.
Отрезок АВ – его ______________________________________.
Прямоугольник АВКМ – его _____________________________.
2) Обведите равные ребра параллелепипеда одним цветом.
V. Домашнее задание. п. 20; № 811, 814, 816, 817 (а), 818.
Из плотной бумаги сделать прямоугольный параллелепипед, измерения которого равны:
Вариант I: а = 15 см, b = 12 см, с = 8 см.
Вариант II: а = 18 см, b = 10 см, с = 6 см.
Урок № 73 Объемы. Объем прямоугольного
параллелепипеда (п. 21)
Цели: сформировать понятия «больший объем», «меньший объем», «равенство объемов», научить вычислять объем прямоугольного параллелепипеда и куба.
Оборудование: два неравных сосуда, подкрашенная жидкость для сравнения объемов; два равных сосуда; модели кубического сантиметра, кубического дециметра; пленка, кодоскоп для выполнения устных упражнений.
Ход урока
I. Устные упражнения.
№ 830 (а), 829 (а, б), 831 (а, б).
II. Изучение нового материала.
План изложения нового материала.
1) Сравнение объемов.
2) Единицы измерения объемов.
3) Что такое 1 см3, 1 дм3?
4) Вывод правила вычисления объема прямоугольного параллелепипеда.
5) Формула объема прямоугольного параллелепипеда.
6) Как можно прочитать формулу V = abc.
7) Формула объема куба: V = а3.
III. Закрепление.
1. Ответить на вопросы п. 21 (вопросы 1–4).
2. Устно: № 814, 820 (а, в), 826, 823 – самостоятельно.
3. На повторение: № 814 (1, 2) – самостоятельно.
IV. Итог урока.
1. Предложить ученикам ответить на вопросы «Что нового узнали на уроке? Чему научились?».
2. А теперь я научу вас, как строить прямоугольный параллелепипед. Строим следующим образом:
V. Домашнее задание. п. 21; № 839, 841, 846 (а), 848 (а, в).
Практическая работа: сделать необходимые измерения и вычислить объем своей комнаты.
Урок № 74 Объемы. Соотношения между
единицами объема (п. 21)
Цели: научить переводить одни единицы объема в другие; закрепить навык вычисления объемов прямоугольного параллелепипеда и куба.
Оборудование: тесты, таблица ответов, калька для каждого ученика.
Ход урока
I. Проверка домашнего задания.
Выполнить тестирование по вариантам.
I вариант
1. В прямоугольном параллелепипеде ABCDMKSP равны ребра (см. рис.):
1) АМ и PS; 2) РМ и DC; 3) PD и ВК; 4) AB и KS.
2. В прямоугольном параллелепипеде ABCDMKSP равны грани (см. рис.):
1) MPDA и MPSK; 2) MABK и DPSC;
3) MABK и KBCS; 4) DPSC и MPDA.
3. Найдите объем прямоугольного параллелепипеда, длина которого 6 см, ширина – 2 см, а высота – 3см.
1) 12 см3; 2) 11 см3; 3) 36 см3; 4) 15 см3.
4. Найдите объем куба с ребром, равным 4 м.
1) 16 м3; 2) 12 м3; 3) 4 м3; 4) 64 м3.
Фамилия, имя класс
| Номер задания
| 1
| 2
| 3
| 4
| Номер ответа
|
|
|
|
|
Вариант II
1. В прямоугольном параллелепипеде ABCDMKSP равны ребра (см. рис.):
1) AD и PS; 2) МК и DC;
3) PD и ВС; 4) ВС и МК.
2. В прямоугольном параллелепипеде ABCDMKSP равны грани (см. рис.):
1) АМКВ и KBCS;
2) ADCB и BKSC;
3) MPDA и AMKB;
4) MPDA и KSCB.
3. Найдите объем прямоугольного параллелепипеда, длина которого равна 4 см, ширина – 2 см, а высота – 3 см.
1) 24 см3; 2) 8 см3; 3) 12 см3; 4) 9 см3.
4. Найдите объем куба с ребром, равным 5 дм.
1) 25 дм3; 2) 125 дм3; 3) 15 дм3; 4) 5 дм3.
Фамилия, имя класс
| Номер задания
| 1
| 2
| 3
| 4
| Номер ответа
|
|
|
|
| II. Устные упражнения.
1. № 829 (в, г, д), 835, 832.
2. Решите анаграммы: ДВАКАТР, РОЗТЕКО, ТЕРГАК.
Объясните, что означает каждое слово.
Ответ: квадрат, отрезок, гектар.
III. Изучение нового материала.
План беседы.
1) Вспомнить, что такое 1 см3, 1 дм3.
2) Провести аналогию: 1 мм3, 1 м3, 1 км3.
3) 1 м3 = 103 дм3 = 1000 дм3 = 1000 л.
4) 1 л = 1 дм3 = 1000 см3 1 см3 = 1000 мм3
5) 1 км3 = 1 000 000 000 м3.
Примечание: во время объяснения пункты 3–5 не записывают; учитель обращает внимание на компактную запись единиц измерения объема, которая расположена на форзаце, её ученики записывают в тетради.
IV. Закрепление.
1. Назвать единицы измерения объема, начиная с самой малой.
2. Решить: № 825 (а, б, в), 820 (б, д), 824, 821, 828.
3. На повторение № 837 (самостоятельно).
V. Итог урока.
1. Повторить формулы объема.
2. Вопросы п. 21 (№ 5–8).
3. № 849.
VI. Домашнее задание. п. 21; № 840, 844, 846 (е, г), 848 (б, д), 834. Познакомиться с № 838.
Урок № 75 Объемы. Соотношения между
единицами объема (п. 21)
Цели: научить переводить одни единицы объема в другие; закрепить навык вычисления объемов прямоугольного параллелепипеда и куба.
Оборудование: на отдельном плакате каждая изученная формула; магнитная доска, набор магнитов.
Ход урока
I. Проверка домашнего задания.
Консультант докладывает о результатах выполнения домашней работы; если были затруднения, то учитель дает пояснения.
II. Устные упражнения.
1. Вспомнить все изученные формулы: S = t; = S : t; t = S : ; Р = (а + b) 2; Р = 4а; а = bq + r; S = ab; S = a2; V = abc; V = a3.
2. Вычислить устно: 23 + 32; 33 + 52; 43 + 6; 103 – 10.
3. № 834.
III. Работа по теме урока.
1. № 820 (г), 825 (а, б, в) – с комментариями с места, № 822, 827.
2. Самостоятельная работа обучающего характера (ДМ, В. 2, 3).
Вариант I
| Вариант II
| 1) Найти объем прямоугольного параллелепипеда, измерения которого равны:
| 24 м, 30 м и 450 дм.
| 26 дм, 25 дм и 4 м.
| 2) Объем физкультурного зала 1800 м3. Его высота 5 м. Какова площадь пола?
| 2) Объем ящика 13600 см3. Найдите площадь дна этого ящика, если его высота 16 см.
| 3) Чему равен объем куба, ребро которого 11 см?
| 3) Чему равен объем куба, ребро которого 12 см?
| Дополнительное задание:
Ширина прямоугольного параллелепипеда 14 см, она меньше длины в 2 раза, но больше высоты на 4 см.
Найдите: а) сумму длин всех ребер; б) площадь его поверхности; в) объем.
| Дополнительное задание:
Длина прямоугольного параллелепипеда 24 см, и она больше ширины в 3 раза, а ширина на 3 см меньше высоты.
Найдите: а) сумму длин всех ребер; б) площадь его поверхности; в) объем.
| IV. Итог урока.
Заполнить таблицы.
Скорость, v
| Время, t
| Расстояние, S
|
| Длина: а
| 3 дм
| 16 см
|
| 5 см
| 18 км/ч
| 3 ч
|
|
| Ширина: b
| 4 дм
|
| 20 дм
|
| 90 км/ч
|
| 450 км
|
| Площадь: S
|
| 64 см2
| 80 дм2
|
|
| 20 ч
| 600 км
|
| Периметр: P
|
|
|
| 24
| V. Домашнее задание. п. 21, повторить п. 17–19; № 845, 843, 846 (в), 848 (г, е). Подготовиться к контрольной работе.
Урок № 76
Контрольная работа № 6
Вариант I
1. Найдите по формуле S = t:
а) путь S, если t = 3 ч, = 408 км/ч.
б) время t, если S = 7200 м, = 800 м/мин.
2. Длина прямоугольного участка земли 650 м, а ширина на 50 м меньше. Найдите площадь участка и выразите ее в гектарах.
3. Длина прямоугольного параллелепипеда 45 см, ширина в 3 раза меньше длины, а высота на 2 см больше ширины. Найдите объем параллелепипеда.
4. Найдите значение выражения:
17040 – 69 238 – 43776 : 72.
5. Длина прямоугольника 84 см. Насколько уменьшится площадь прямоугольника, если его ширину уменьшить на 5 см?
Вариант II
1. Найдите по формуле S = t:
а) путь S, если t = 11 ч, = 65 км/ч.
б) скорость , если S = 600 км, t = 50 с.
2. Ширина прямоугольного участка земли 600 м, а длина на 150 м больше. Найдите площадь участка и выразите ее в гектарах.
3. Ширина прямоугольного параллелепипеда 14 см, она меньше длины в 3 раза. Высота параллелепипеда на 12 см меньше длины. Найдите объем параллелепипеда.
4. Найдите значение выражения:
350 92 – 66600 : 36 + 9670.
5. Ширина прямоугольника 44 см. Насколько уменьшится площадь этого прямоугольника, если его длину уменьшить на 5 см?
Домашнее задание.
Решить другой вариант. На урок принести циркуль, линейку.
Урок № 77 Окружность и круг
Цели: научить учащихся понимать, что такое окружность, круг, давать определения и строить радиус, диаметр, полукруг, полуокружность.
Оборудование: циркуль, линейка.
Ход урока
I. Анализ контрольной работы.
а) Общий анализ контрольной работы.
б) Объяснение заданий, с которыми не справились многие ученики.
в) Демонстрация лучших работ.
Карточки с индивидуальными заданиями для работы над ошибками ученики получают вместе с тетрадью для контрольных работ.
|