|
Протокол № 2013г. «Согласовано» Зам директора по увр Муниципальное бюджетное образовательное учреждение
«Холмовская средняя общеобразовательная школа»
Холм- Жирковского района Смоленской области
«Рассмотрено»
Руководитель ШМО
_________/___________
Протокол №_______
«____»__________2013г.
| «Согласовано»
Зам.директора по УВР
__________/И .Л. Брынчик
«______»__________2013г.
| «Утверждено»
Директор МБОУ
_________/Т. В. Муравьёва
Приказ № _______
«______»_________2013г.
|
Рабочая программа
по математике
в 10 классе
на 2013- 2014 учебный год
Даниленкова Людмила Анатольевна
учитель математики,
высшая квалификационная категория 2013год
Пояснительная записка к рабочей программе по курсу «Математика» 10 класс
(базовый уровень)
Настоящее календарно – тематическое планирование разработано в соответствии с Примерной программой среднего (полного) образования по математике (базовый уровень), с учетом требований федерального компонента государственного стандарта общего образования и на основе авторских программ Мордковича А. Г., Погорелова А. В.
Программа рассчитана на 5 часов в неделю (алгебра – 3часа, геометрия – 2часа), всего – 170 часов.
Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения алгебре и началам анализа:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
На основании требований Государственного образовательного стандарта 2010 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:
приобретение математических знаний и умений;
овладение обобщенными способами мыслительной, творческой деятельностей;
освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.
Согласно действующему в школе учебному плану и с учетом направленности классов календарно-тематический план предусматривает следующие варианты организации процесса обучения: Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
С учетом уровневой специфики класса выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты). Планируется использование новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно-тематического планирования, связанные с объективными причинами.
Основой целью является обновление требований к уровню подготовки выпускников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта – переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса алгебры и начал анализа.
При изучении алгебры и начал анализа и геометрии в старшей школе осуществляется переход от методики поурочного планирования к модульной системе организации учебного процесса. Модульный принцип позволяет не только укрупнить смысловые блоки содержания, но и преодолеть традиционную логику изучения математического материала: от единичного к общему и всеобщему и от фактов к процессам и закономерностям. В условиях модульного подхода возможна совершенно иная схема изучения математических процессов «все общее – общее – единичное».
Специфика целей и содержания изучения алгебры и начал анализа на базовом уровне существенно повышает требования к рефлексивной деятельности учащихся: к объективному оцениванию своих учебных достижений, поведения, черт своей личности, способности и готовности учитывать мнения других людей при определении собственной позиции и самооценке, понимать ценность образования как средства развития культуры личности.
Стандарт ориентирован на воспитание школьника – гражданина и патриота России, развитие духовно-нравственного мира учащегося, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе – воспитание гражданственности и патриотизма. УМК для обучающихся:
1. Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень)/ [А.Г. Мордкович, И.М. Смирнова, Л.О. Денищева и др.]; под ред. А.Г. Мордковича, И.М. Смирновой.– 6-е изд., стер.–М.: Мнемозина, 2010.
2. Математика. Подготовка к ЕГЭ – 2012. Вступительные испытания. Под ред. Ф.Ф. Лысенко. – Ростов –на-Дону: Легион, 2011.
3. Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет-ресурсов:
Министерство образования РФ: https://informika.ru/;
https://ed.gov.ru/; https://edu.ru/
Тестирование online: 5–11 классы: https://kokch.kts.ru/cdo/
Педагогическая мастерская, уроки в Интернет и многое другое: https://teacher.fio.ru
Новые технологии в образовании: https://edu.secna.ru/main/
Путеводитель «В мире науки» для школьников:
https://uic.ssu.samara.ru/~nauka/.
Мегаэнциклопедия Кирилла и Мефодия: https://mega.km.ru.
Сайты «Мир энциклопедий», например: https://rubricon.ru/;
https://encyclopedia.ru/ УМК для учителя:
1. Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень)/ [А.Г. Мордкович, И.М. Смирнова, Л.О. Денищева и др.]; под ред. А.Г. Мордковича, И.М. Смирновой.– 6-е изд., стер.–М.: Мнемозина, 2010.
2. Математика. Подготовка к ЕГЭ – 2012. Вступительные испытания. Под ред. Ф.Ф. Лысенко. – Ростов –на-Дону: Легион, 2011.
3. Задачи по геометрии: Пособие для учащихся 7 – 11 кл. общеобразоват. Учреждений/ Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. – 5-е изд. – М.: Просвещение, 2009.
Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. – М.: Просвещение, 2009.
Александрова Л.А. Алгебра и начала анализа. 10 класс: самостоятельные работы / Л.А. Александрова – М.: Мнемозина, 2008
В.И. Глизбург. Алгебра и начала анализа. 10 класс: контрольные работы / А.Г. Мордкович – М.: Мнемозина, 2009
Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля: учебно-методическое пособие / под ред. Ф.Ф. Лысенко. Ростов н/Д.: Легион, 2010
Дидактические материалы по геометрии для 10 кл/ Б.Г. Зив и др. – М.: Просвещение, 2008.
Требования к уровню подготовки учащихся 10 классов
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
– вероятностный характер различных процессов окружающего мира;
Алгебра
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств, пользоваться оценкой и прикидкой при практических расчетах;
– проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;
– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для практических расчетов по формулам, включая формулы, содержащие тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь:
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций;
– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь:
– вычислять производные элементарных функций, используя справочные материалы;
– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения
Уравнения и неравенства
уметь:
– решать рациональные и тригонометрические уравнения и неравенства, их системы;
– составлять уравнения и неравенства по условию задачи;
– использовать для приближенного решения уравнений и неравенств графический метод;
– изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для построения и исследования простейших математических моделей;
владеть компетенциями:
– учебно-познавательной;
– ценностно-ориентационной;
– рефлексивной;
– коммуникативной;
– информационной;
– социально-трудовой.
Геометрия
Учащиеся должны знать: Параллельность прямых и плоскостей. Параллельные прямые в пространстве. Параллельность трех прямых. Параллельность прямой и плоскости. Скрещивающиеся прямые. Углы с сонаправленными сторонами. Угол между прямыми. Параллельные плоскости. Свойства параллельных плоскостей. Тетраэдр. Перпендикулярность прямых и плоскостей. Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости. Признак перпендикулярности прямой и плоскости. Теорема о прямой, перпендикулярной к плоскости. Расстояние от точки до плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью.. Признак перпендикулярности двух плоскостей.
Учащиеся должны уметь:
· распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
· анализировать в простейших случаях взаимное расположение объектов в пространстве;
· решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);
· использовать при решении стереометрических задач планиметрические факты и методы;
· проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
· вычисления площадей, используя при необходимости справочники и вычислительные устройства.
Для оценки учебных достижений обучающихся используется:
текущий контроль в виде проверочных работ и тестов;
тематический контроль в виде контрольных работ;
итоговый контроль в виде контрольной работы и теста. Контрольные и проверочные работы берутся из следующих источников:
Александрова Л.А. Алгебра и начала анализа. 10 класс: самостоятельные работы / Л.А. Александрова – М.: Мнемозина, 2008
В.И. Глизбург. Алгебра и начала анализа. 10 класс: контрольные работы / А.Г. Мордкович – М.: Мнемозина, 2009
Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля: учебно-методическое пособие / под ред. Ф.Ф. Лысенко. Ростов н/Д.: Легион, 2010
Дидактические материалы по геометрии для 10 кл/ Б.Г. Зив и др. – М.: Просвещение, 2008
Содержание образовательных программ
Алгебра (102часа).
1. Числовые функции (9часов)
Определение числовой функции и способы ее задания. Свойства функций. Обратная функция.
2. Тригонометрические функции (26часов)
Числовая окружность. Числовая окружность на координатной плоскости. Синус и косинус. Тангенс и котангенс. Тригонометрические функции числового аргумента. Тригонометрические функции углового аргумента. Формулы приведения. Функции синуса, косинуса, тангенса и котангенса и их свойства.
3. Тригонометрические уравнения (10часов)
Арккосинус и арксинус, арктангенс и арккотангенс. Решение тригонометрических уравнений.
4. Преобразования тригонометрических уравнений (15часов)
Синус и косинус суммы и разности аргументов. Тангенс суммы и разности двух аргументов. Формулы двойного угла. Преобразование сумм тригонометрических функций в произведения. Преобразование произведений тригонометрических функций в суммы.
5. Производная (31час)
Числовые последовательности и их пределы. Производная. Вычисление производных. Уравнение касательной к графику функции. Исследование функций на монотонность экстремумы. Построение графиков функций. Задачи на отыскание наибольших и наименьших величин.
6.Повторение (11час)
Геометрия (68часов). 1.Аксиомы стереометрии и их простейшие следствия ( 7часов)
Аксиомы стереометрии. Существование плоскости, проходящей через точку и прямую, через 3 точки, Через 2 пересекающиеся прямые.
2. Параллельность прямых и плоскостей (19часов)
Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельных плоскостей. Изображение пространственных фигур на плоскости.
3. Перпендикулярность прямых и плоскостей (23часа)
Перпендикулярность прямых в пространстве. Признак перпендикулярности прямой и плоскости. Свойства перпендикулярных прямой и плоскости. Построение перпендикулярных прямой и плоскости. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми. Ортогональное проектирование.
4. Декартовы координаты и векторы в пространстве (14часов)
Декартовы координаты в пространстве. Расстояние между точками. Координаты середины отрезка. Симметрия в пространстве. Движение в пространстве. Параллельный перенос. Подобие фигур. Угол между скрещивающимися прямыми. Угол между прямой и плоскостью. Площадь ортогональной проекции многоугольника. Векторы в пространстве. Действия над векторами. Уравнение плоскости.
5. Повторение (5часов).
Учебно – тематическое планирование
Алгебра (102ч)
| Геометрия (68ч)
| №
п/п
| Темы
| Кол-во часов
| №
п/п
| Темы
| Кол-во
часов
| 1
| Числовые функции
| 9
| 1
| Аксиомы стереометрии и их простейшие следствия
| 7
| 2
| Тригонометрические функции
| 26
| 2
| Параллельность прямых и плоскостей
| 19
| 3
| Тригонометрические уравнения
| 10
| 3
| Перпендикулярность прямых и плоскостей
| 23
| 4
| Преобразования тригонометрических уравнений
| 15
| 4
| Декартовы координаты и векторы в пространстве
| 14
| 5
| Производная
| 31
| 5
| Повторение
| 5
| 6
| Повторение
| 11
|
|
|
| |
|
|