Главная страница

Программа по математике к учебнику «Алгебра и начала анализа. 10-11 класс»



Скачать 455.54 Kb.
НазваниеПрограмма по математике к учебнику «Алгебра и начала анализа. 10-11 класс»
страница3/3
Дата27.02.2016
Размер455.54 Kb.
ТипПрограмма
1   2   3

52

53

Переход к новому основанию логарифма

Знать: Формулу перехода от логарифма по одному основанию к логарифму по другому основанию и частные случаи этой формулы

Уметь: использовать эту формулу при решении логарифмических уравнений и неравенств.

Формула перехода от логарифма по одному основанию к логарифму по другому основанию и частные случаи этой формулы







54

55

Дифференцирование показательной и логарифмической функций

Знать: что такое число е, понятие зкспоненты, свойства функции у=ех, формулы дифференцирования и интегрирования функции у=ех, определение натурального логарифма, функции у = lnх, ее свойства и график, формулы дифференцирования и интегрирования функций у=lnх,

у=ах, у=logах

Уметь: находить производные и интегралы функций, содержащих ех, lnх

Понятия числа е, экспоненты, натурального логарифма, функции у=lnх, графики , свойства, формулы дифференцирования и интегрирования функций у=ех, у=lnх.. Нахождение производных, интегралов функций, содержащих ех, lnх, решение уравнения, неравенства и задачи на вычисление площадей фигур и касательную с применением этих формул







56

Контрольная работа

№ 5 «Показательная и логарифмическая функция»







Цилиндр, конус, шар(12 часов)

57

58

59

Цилиндр

Знать: понятия цилиндрической поверхности, определение цилиндра, его элементы (боковая поверхность, основания, образующие, ось, высота, радиус); формулы для вычисления площадей боковой и полной поверхностей цилиндра

Уметь: применять изученные формулы для решения задач по данной теме , решать задачи типа 521-546, 601-608

Ввести понятия цилиндрической поверхности, цилиндра и его элементов (боковая поверхность, основания, образующие, ось, высота, радиус), вывести на основе определения цилиндра формулу боковой поверхности, а также формулу полной поверхности цилиндра







60

61

62

Конус

Знать: понятия конической поверхности, определение конуса, его элементы (боковая поверхность, основание, вершина, образующие, ось, высота), усеченного конуса; формулы для вычисления площадей боковой и полной поверхностей конуса и усеченного конуса

Уметь: решать задачи типа 547-569

Ввести понятия конической поверхности, конуса и его элементов (боковая поверхность, основание, вершина, образующие, ось, высота), вывести формулу для вычисления боковой и полной поверхностей конуса; сформировать у учащихся представление о том, что усеченный конус – это часть полного конуса, заключенная между его основанием и секущей плоскостью, параллельной основанию








63

64

65

Сфера

Знать: определения сферы, шара, понятие уравнения поверхности в пространстве, уравнение сферы

Уметь: решать задачи типа 590-600, 619-628

Ввести понятия сферы, шара и их элементов (центр, радиус, диаметр), вывести уравнение сферы в заданной прямоугольной системе координат, рассмотреть взаимные случаи расположения сферы и плоскости, теоремы о касательной плоскости к сфере, познакомить учащихся с формулой площади сферы, научить решать задачи по данной теме








66

67

Решение задач


Уметь: решать задачи типа 630 - 646

Закрепить в процессе решения задач полученные знания и навыки








68

Контрольная работа

№ 6 «Цилиндр, конус, шар»


Уметь: решать типовые задачи, использовать полученные знания для исследования практических ситуаций










Первообразная и интеграл(7 часов)

69

70

71

Первообразная и неопределенный интеграл

Знать: понятие первообразной, формулы для отыскания первообразных, правила отыскания первообразных; определение неопределенного интеграла, таблицу основных неопределенных интегралов, правила интегрирования

Уметь: доказывать, что функция является первообразной, находить множество первообразных для заданной функции, находить первообразную, график которой проходит через заданную точку, находить неопределенный интеграл, используя правила интегрирования и таблицу основных неопределенных интегралов

Понятие первообразной, неопределенного интеграла, правила для отыскания первообразных, правила интегрирования, формулы для отыскания первообразных и неопределенных интегралов; нахождение множества первообразных для заданной функции, решение задач по нахождению первообразной, график которой проходит через заданную точку, решение задачи по нахождению неопределенных интегралов







72

73

74

Определенный интеграл

Знать: понятие определенного интеграла, геометрический и физический смысл определенного интеграла, формулу Ньютона-Лейбница.

Уметь: вычислять определенный интеграл, вычислять площади плоских фигур с помощью определенного интеграла.

3 задачи, приводящие к понятию определенного интеграла: о вычислении площади криволинейной трапеции, о вычислении массы стержня, о перемещении точки, понятие определенного интеграла, формулу Ньютона-Лейбница. Вычисление определенных интегралов, площади плоских фигур с помощью определенного интеграла.







75

Контрольная работа

№7 «Первообразная и интеграл»







Элементы математической статистики, комбинаторики и теории вероятностей(12 часов)

76

77

Статистическая обработка данных

классическая вероятностная схема, вероятность событий, геометрическая вероятность, равновозможные исходы, предельный переход

Знают классическую вероятностную схему для равновозможных испытаний;
знают правило геометрических вероятностей. Используют компьютерные технологии для создания базы данных.







78

79

Простейшие вероятностные задачи

схема Бернулли, теорема Бернулли, биноминальное распределение, многоугольник распределения

Учащиеся решают вероятностные задачи, используя вероятностную схему Бернулли, теорему Бернулли, понятие многогранник распределения. Используют для решения познавательных задач справочную литературу.







80

81

Сочетания и размещения

обработка информации, таблицы распределения данных, графики распределения данных, паспорт данных, числовые характеристики, таблица распределения, частота варианты, гистограмма распределения, мода, медиана, среднее ряда данных.

Знают понятия: общий ряд данных, выборка, варианта, кратность варианты, таблица распределения, частота варианты, график распределения частот, треугольник Паскаля. Находят частоту события, используя собственные наблюдения и готовые статистические данные, понимают статистические утверждения, встречающиеся в повседневной жизни.







82

83

Формула бинома Ньютона

статистическая устойчивость, гауссова кривая, алгоритм использования гауссовой кривой в приближенных вычислениях, закон больших чисел

Знают, график какой функции называется гауссовой кривой; алгоритм использования кривой нормального распределения и функции площади под гауссовой кривой в приближенных вычислениях, о законе больших чисел. Решают вероятностные задачи, используя знания о гауссовой кривой, алгоритме использования кривой нормального распределения и функции площади под гауссовой кривой в приближенных вычислениях, о законе больших чисел.







84

85

Случайные события и их вероятности

Дать определение относительной частоты случайного события. Сформулировать классическое определение вероятности случайного события

Уметь вычислять вероятность случайного события при классическом подходе







86

Решение практических задач













87

Контрольная работа №8

«Элементы теории вероятностей и математической статистики»

Уметь: решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул,

вычислять, в простейших случаях, вероятности событий, использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Учащиеся свободно демонстрируют умение решать задачи на применение элементов математической статистики и элементов теории вероятностей







Объёмы тел(17 часов)

88

89

Понятие объема. Объем прямоугольного параллелепипеда

Знать: единицы измерения объемов, свойства объемов; формулу объема куба и прямоугольного параллелепипеда

Уметь: решать задачи типа № 647 - 657

Ввести понятие объема тела, рассмотреть свойства объемов, теорему об объеме прямоугольного параллелепипеда и следствие об объеме прямой призмы, основанием которой является прямоугольный треугольник








90

91

92

Объем прямой призмы и цилиндра

Знать: формулы объемов прямой призмы и цилиндра
Уметь: решать задачи типа № 659 - 672

Изучить теоремы об объемах прямой призмы и цилиндра, выработать навыки решения задач с использованием формул объемов этих тел.







93

94

95

96

Объем наклонной призмы, пирамиды, конуса

Знать: формулы объемов наклонной призмы, пирамиды и конуса.
Уметь: решать задачи типа № 674 - 682

Разъяснить учащимся возможность и целесообразность применения определенного интеграла для вычисления объемов тел, вывести формулу объема наклонной призмы с помощью интеграла, показать применение полученных формул при решении задач.







97

98

99

100

Объем шара и площадь сферы

Знать: формулы объема шара и площади сферы, шарового сегмента, шарового слоя и шарового сектора.

Уметь: решать задачи типа № 710 - 724

Вывести формулы объема шара и площади сферы, показать их применение при решении задач, познакомить учащихся с формулами для вычисления объемов частей шара – шарового сегмента, шарового слоя и шарового сектора.







101

102

103

Решение задач

Знать: формулы объема шара и площади сферы, шарового сегмента, шарового слоя и шарового сектора.

Уметь: решать задачи типа № 748 - 760

Повторить основные формулы объемов тел, закрепить их применение при решении задач, подготовиться к контрольной работе







104

Контрольная работа

№ 9 «Объёмы тел»







Уравнения и неравенства. Системы уравнений и неравенств(17 часов)

105

106

Равносильность уравнений

Знать: определения равносильных уравнений, уравнения- следствия, постороннего корня, теоремы о равносильности уравнений, причины потери корней при решении уравнений

Уметь: преобразовывать данное уравнение в уравнение- следствие, доказывать равносильность уравнений


Определения равносильных уравнений, уравнения- следствия, постороннего корня, теоремы о равносильности уравнений; преобразование данных уравнений в уравнение- следствие, определение посторонних корней







107

108

109

Общие методы решения уравнений

Знать: 4 общих метода решения уравнений

Уметь: использовать рассмотренные методы при решении уравнений

Общие методы решения уравнений: замена уравнения h(f(x))=h(g(x)) уравнением

f(x)=g(x), метод разложения на множители, метод введения новых переменных, функционально- графический метод







110

111

112

Решение неравенств с одной переменной

Знать: определения равносильных неравенств, неравенства- следствия, теоремы о равносильности неравенств, определения системы неравенств, совокупности неравенств

Уметь: доказывать равносильность неравенств, решать неравенства, применяя теоремы о равносильности неравенств, решать системы и совокупности неравенств, иррациональные неравенства и неравенства с модулями

Понятия: равносильных неравенств, неравенства- следствия, системы неравенств, совокупности неравенств. Теоремы о равносильности неравенств. Применение теорем о равносильности неравенств при решении неравенств с одной переменной, решение систем и совокупности неравенств, иррациональные неравенства, неравенства с модулями







113

114

115

116

Уравнения и неравенства с двумя переменными.

Системы уравнений

Знать: понятия системы уравнений, решения системы, равносильных систем, основные методы решения систем

Уметь: применять изученные методы при решении систем, решать текстовые задачи с помощью систем уравнений

Понятие системы уравнений, решения системы уравнений, равносильных систем. Основные методы решения систем: подстановки, алгебраического сложения, введения новых переменных, графического, метод умножения, метод деления.







117

118

119

Уравнения и неравенства с параметрами

Знать: что такое уравнение и неравенство с параметрами и как рассуждают при решении уравнений и неравенств с параметрами

Уметь: решать простейшие уравнения и неравенства с парамет­рами

Понятие уравнения и нера­венства с параметрами. Решение уравнений и неравенств с параметрами







120

121

Контрольная работа № 10 «Уравнения и неравенства. Системы уравнений и неравенств»


Знать: понятия уравнения, неравенства, системы уравнений,

Уметь: применять изученные методы при решении уравнений, неравенств, систем, решать текстовые задачи










Повторение(15 часов)

122

Повторение. Преобразование выражений, содержащих степени с рациональным показателем.

Уметь: выполнять преобразование выражений, содержащих степени с рациональным показателем.










123

Повторение. Решение неравенств методом интервалов

Уметь: решать неравенства методом интервалов










124

Повторение. Арифметическая, геометрическая прогрессия.

Уметь: решать задачи на арифметическую, геометрическую прогрессию.










125

Повторение. Решение тригонометрических уравнений.

Уметь: решать тригонометрические уравнения.










126

Повторение. Наибольшее и наименьшее значение функции. Множество значений функции.

Уметь: находить наибольшее и наименьшее значение функции, множество значений функции.










127

Повторение. Решение иррациональных уравнений.

Уметь: решать иррациональные уравнения.










128

Повторение. Решение показательных уравнений и неравенств.

Уметь: решать показательные уравнения и неравенства.










129

Повторение. Решение логарифмических уравнений и неравенств.

Уметь: решать логарифмические уравнения и неравенства.










130

Повторение. Решение задач на проценты, движение, совместную работу.

Уметь: решать задачи на проценты, движение, совместную работу.










131

Повторение. Решение задач по геометрии.













132

Повторение. Решение задач по геометрии.













133

134

Итоговое тестирование













135

Решение задач ЕГЭ













136

Решение задач ЕГЭ















1   2   3