Главная страница

Пояснительная записка



Скачать 483.71 Kb.
НазваниеПояснительная записка
страница1/2
Т.А. Бурмистрова
Дата11.02.2016
Размер483.71 Kb.
ТипПояснительная записка
  1   2

  1. Пояснительная записка

Рабочая программа учебного курса математики для 6 класса составлена на основе примерной программы основного общего образования по математике (сборник программ общеобразовательных учреждений по математике 5 – 6 классы. М. Просвещение, 2009 составитель Т.А. Бурмистрова) в соответствии с федеральным компонентом государственного образовательного стандарта основного общего образования, с учетом специфики усвоения учебного материала обучающимися в специальном (коррекционном) классе VII вида (для детей с задержкой психического развития).

Данная рабочая программа составлена для изучения математики по учебнику: Математика. учебник для 6 класса общеобразовательных учреждений / Н.Я Виленкин. и др. М.: Мнемозина 2012.

Уровень рабочей программы базовый

Нормативные правовые документы, на основании которых разработана рабочая программа:

  • Федеральный закон от 29.12.2012 года № 273-ФЗ (ред. От 07 мая 2013 года) «Об образовании в Российской Федерации»

  • Федеральный компонент государственного образовательного стандарта общего образования, утвержденный Приказом Министерства образования РФ от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования» (в редакции приказов Министерства образования и науки РФ от 03.06.2008 г. № 164, от 31.08.2009 г. № 320, от 19.10.2009г. № 427);

  • Приказ Министерства образования и науки РФ от 19.12.2012 г. № 1067 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/2014 учебный год»

  • Основная общеобразовательная программа основного общего образования МБОУ «Средняя общеобразовательная школа № 4»

  • Учебный план МБОУ «Средняя общеобразовательная школа № 4» на 2013- 2014 учебный год.

Настоящая программа по математике является логическим продолжением непрерывного курса математики общеобразовательной школы. Сохраняя основное содержание образования, принятое для массовой школы, отличается тем, что предусматривает коррекционную направленность обучения.

Учитывая особенности учащихся класса VII вида, в программе используются словесные, практические и наглядные методы, которые:

  • имеют четкую структуру и графическое выделение выводов, важнейших положений, ключевых понятий;

  • содержат достаточное количество иллюстраций, облегчающих восприятие, понимание материала;



  • стимулируют у учащихся развитие самостоятельности при решении поставленных учебных задач;

  • формируют умение пользоваться имеющимися знаниями.

В программе для детей с задержкой психического развития усилена практическая направленность обучения.

Один из приемов, используемых на уроке – алгоритмизация. Это различные памятки-инструкции, в которых записана последовательность действий при решении уравнений, задач, трудных случаев умножения и деления. Для решения арифметических задач используются наглядные действия или чертеж.

Учитывая особенности детей с ограниченными возможностями здоровья, в данной программе исключаются громоздкие вычислительные операции, подбираются числа, которые являются составными и с помощью которых легко проводятся различные вычисления. Задачи предлагаются с наиболее доступным содержанием и простейшей формулировкой, уравнения решаются только с нахождением одного компонента, с несложным раскрытием скобок и приведением подобных слагаемых.

Объём изучаемого материала позволяет принять небыстрый темп продвижения по курсу. В 6 классе отводится достаточно времени на отработку основных умений и навыков, отвечающих обязательным требованиям, на повторение, в том числе коррекцию знаний и умений за 5 класс и начальную школу.

  1. Общая характеристика учебного предмета

Математическое образование в 6 классе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей необходимы, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты.

Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Знания по математике имеют важное значение в повседневной жизни: покупка продуктов питания, одежды, обихода, быта, оплата квартиры и других коммунальных услуг, расчет количества материалов для ремонта, по смежному вкладу и др. Кроме этого, математические знания необходимы детям при усвоении других учебных предметов, таких, как технология, химия, география, физика.

Целью изучения математики в 6 классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над положительными и отрицательными числами и обыкновенными дробями, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Серьёзное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполненных действий. В дальнейшем знания и умения, приобретенные при изучении математики, станут необходимыми для овладения доступными профессионально-трудовыми навыками.

  1. Место предмета «Математика» в учебном плане

Согласно федеральному базисному учебному плану на изучение математики в 6 классах отводится 170 часов на учебный год из расчета 5 ч в неделю.

  1. Содержание программы




  1. Повторение – 3 ч.

Обыкновенные дроби с одинаковым знаменателем. Десятичные дроби и действия с ними. Проценты. Углы. Координатный луч.

Основная цель – повторить теоретический материал курса математики 5 класса.

2. Делимость чисел (14 ч).

Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.

Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.

Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 • 6 = 4 • 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.

3. Сложение и вычитание дробей с разными знаменателями (23 ч).

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.

  1. Умножение и деление обыкновенных дробей (29 ч).

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цель — выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.

  1. Отношения и пропорции (17 ч).

Отношение. Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции. Масштаб. Понятие длины окружности и площади круга. Шар.

Основная цель — сформировать понятия отношения, пропорции, прямой и обратной пропорциональностей величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Рассмотрение геометрических фигур завершается знакомством с шаром.

  1. Положительные и отрицательные числа (13 ч).

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл.

Сравнение чисел. Целые числа. Изображение чисел на прямой. Координата точки.

Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

  1. Сложение и вычитание положительных и отрицательных чисел (11 ч).

Сложение и вычитание положительных и отрицательных чисел.

Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

  1. Умножение и деление положительных и отрицательных чисел (12 ч).

Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как ½, ¼.

  1. Решение уравнений (15 ч).

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений.

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным.

  1. Координаты на плоскости (10 ч).

Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.

Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений.

Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

  1. Элементы статистики, комбинаторики и теории вероятностей (6 ч)


Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. 

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

В ходе изучения темы обучающиеся должны

Знать:

- понятие вероятности, правило умножения.

Уметь:

-выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных задач;

-приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий;

-строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

-выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

12. Повторение. Решение задач (17 ч).

  1. Тематическое планирование

п\п

Наименование темы

Кол. часов

1

Повторение курса математики 5 класса

3

2

Делимость чисел

14

3

Сложение и вычитание дробей с разными знаменателями

23

4

Умножение и деление обыкновенных дробей

29

5

Пропорции

17

6

Положительные и отрицательные числа

13

7

Сложение и вычитание положительных и отрицательных чисел

11

8

Умножение и деление положительных и отрицательных чисел

12

9

Решение уравнений

15

10

Координаты на плоскости

10

11

Элементы статистики, комбинаторики и теории вероятностей.

6

12

Повторение

17




Итого часов

170
  1   2