Главная страница

Протокол №1 от 30. 08. 2014г. «Согласовано» Заместитель директора по увр моу «сош №3 г. Ершова»



НазваниеПротокол №1 от 30. 08. 2014г. «Согласовано» Заместитель директора по увр моу «сош №3 г. Ершова»
страница2/6
Дата14.02.2016
Размер0.75 Mb.
ТипПротокол
1   2   3   4   5   6

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения математики ученик должен

знать/понимать1

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;


СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Алгебра 9 класс

1. Квадратичная функция

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция y=ax2 + bx + с, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. [Решение рациональных неравенств методом интервалов.]

 Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.

Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций

Уметь находить область определения и область значений функции, читать график функции

Уметь решать квадратные уравнения, определять знаки корней

Уметь выполнять разложение квадратного трехчлена на множители

Уметь строить график функции у=ах2 , выполнять простейшие преобразования графиков функций

Уметь строить график квадратичной функции, выполнять простейшие преобразования графиков функций

Уметь строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения.

Уметь построить график функции y=ax2 и применять её свойства. Уметь построить график функции y=ax2 + bx + с и применять её свойства

Уметь находить токи пересечения графика Квадратичной функции с осями координат. Уметь разложить квадратный трёхчлен на множители.

Уметь решать квадратное уравнение.

Уметь решать квадратное неравенство алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции

Уметь решать квадратное неравенство методом интервалов. Уметь находить множество значений квадратичной функции.

Уметь решать неравенство ах2 +вх+с.≥0 на основе свойств квадратичной функции

2. Уравнения и системы уравнений

Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными.

 Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.

Знать методы решения уравнений:

а) разложение на множители;

б) введение новой переменной;

в)графический способ.

Уметь решать целые уравнения методом введения новой переменной

Уметь решать системы 2 уравнений с 2 переменными графическим способом

Уметь решать уравнения с 2 переменными способом подстановки и сложения

Уметь решать задачи «на работу», «на движение» и другие составлением систем уравнений.

3. Прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.

 Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»

Знать формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии

Уметь применять формулу суммы n –первых членов арифметической прогрессии при решении задач

Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии

Уметь применять формулу при решении стандартных задач

Уметь применять формулу S= при решении практических задач

Уметь находить разность арифметической прогрессии

Уметь находить сумму n первых членов арифметической прогрессии. Уметь находить

любой член геометрической прогрессии. Уметь

находить сумму n первых членов геометрической

прогрессии. Уметь решать задачи.

4. Степенная функция. Корень n-й степени

Четная и нечетная функции. Функция y=xn, Определение корня n-й степени.

 Цель – ввести понятие корня n-й степени.

Знать определение и свойства четной и нечетной функций

Уметь строить график функции у=хn , знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn=а при: а) четных и б)нечетных значениях n

Знать определение корня n- й степени, при каких значениях а имеет смысл выражение

Уметь выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени

Знать, что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби

Знать свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем

Уметь выполнять преобразования выражений, содержащих степени с дробным показателем

5. Элементы статистики и теории вероятностей

Комбинаторные задачи. Перестановки, размещения, сочетания. Перестановки. Размещения. Сочетания Вероятность случайного события

Знать формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.

Уметь пользоваться формулой комбинаторики при вычислении вероятностей

6. Тригонометрические выражения

Радианное измерение углов. Синус, косинус, тангенс и котангенс произвольного угла. Основные тригонометрические тождества . Их применение в вычислениях и тождественных преобразованиях.

 Цель – ввести понятия синуса, косинуса, тангенса и котангенса произвольного угла; сформировать умения вычислять значения тригонометрических функций по известному значению одной из них; выполнять несложные преобразования тригонометрических выражений.

Знать определение тригонометрических функций, область определения и область значений, уметь их находить

Знать свойства тригонометрических функций и что при изменении угла на целое число оборотов значения синуса, косинуса, тангенса и котангенса не изменяются

Знать приближенное значение 1 радиана в градусах, уметь переводить радианную меру угла в градусную и наоборот

Уметь применять основные тригонометрические формулы одного и того же угла к преобразованию выражений

Уметь применять изученные формулы к преобразованию выражений

7. Повторение. Решение задач

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).

Геометрия 9 класс

Тема

Знания, умения, навыки учащихся

Векторы




Понятие вектора

Уметь изображать и обозначать векторы, откладывать от любой точки плоскости вектор, равный данному

Сложение и вычитание векторов

Знать законы сложения векторов, уметь строить сумму двух и более векторов, пользоваться правилом треугольника, параллелограмма, многоугольника

Умножение векторов на число и его свойства

Знать свойства умножения вектора на число, уметь решать задачи типа 782-787

Применение векторов к решению задач

Средняя линия трапеции

Знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа 793-798

Метод координат




Разложение вектора по 2 неколлинеарным векторам. Координаты вектора

Уметь применять теорему о разложении вектора по 2 неколлинеарным векторам, знать правила действий над векторами с заданными координатами.

Простейшие задачи в координатах

Уметь выводить формулы координат вектора через координаты его конца и начала координат середины отрезка, длины вектора и расстояния между двумя точками, уметь решать задачи типа 945, 951

Уравнение окружности

Уравнение прямой


Знать и уметь выводить уравнения окружности и прямой, уметь строить окружность и прямые, заданные уравнениями решать задачи типа 966, 972

Соотношения между сторонами и углами треугольника




Синус, косинус, тангенс


Знать, как вычисляется синус, косинус, тангенс для углов от 0 до 180, уметь доказывать основное тригонометрическое тождество, знать формулу для вычисления координат точки, уметь решать задачи типа 1013-1019

Основное тригонометрическое тождество


Формулы для вычисления координат точки

Теорема о площади круга

Уметь доказывать теорему о площади треугольника, теорему синусов, теорему косинусов; применять эти теоремы при решении задач

Теорема синусов

Теорема косинусов

Решение треугольников

Скалярное произведение векторов


Знать определение скалярного произведения векторов, условие перпендикулярности векторов, выражать скалярное произведение в координатах , знать его свойства, уметь решать задачи типа 1044, 1045, 1047, 1048,1050, 1051

Длина окружности и площадь круга




Правильный многоугольник.

Окружность, около правильного многоугольника

Знать определение правильного многоугольника, теорему об окружности, описанной около правильного многоугольника и окружности, вписанной в правильный многоугольник; знать формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности, уметь их выводить и применять при решении задач типа 1081, 1083,1087, 1094, 1098, 1100


Окружность, вписанная в правильный многоугольник


Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

Длина окружности


Знать формулы длины окружности и дуги окружности, уметь применять их при решении и задач типа 1111,1113, 1119; знать формулы площади круга и кругового сектора, уметь применять их при решении задач типа 1120, 1126, 1127

Площадь круга. Площадь кругового сектора


Движения




Понятие движения

Уметь объяснять, что такое отображение плоскости на себя, знать определение движения плоскости, уметь доказывать, что осевая и центральная симметрии являются движениями и что при движении отрезок отображается на отрезок, а треугольник на равный ему треугольник, решать задачи типа 1152, 1159, 1161

Параллельный перенос


Уметь объяснять, что такое параллельный перенос и поворот, доказывать, что параллельный перенос и поворот являются движениями плоскости; решать задачи типа 1164, 1165, 1167, 1168

Поворот



ТЕМАТИЧЕСКИЙ ПЛАН

к курсу АЛГЕБРЫ 9 класса




п/п

Название темы

Кол-во

часов

Контрольные

работы

1

Неравенства и системы неравенств

16

1

2

Системы уравнений

15

1

3

Числовые функции

25

2

4

Прогрессии

16

1

5

Элементы комбинаторики, статистики и теории вероятностей

12

1

6.

Итоговое повторение

18

1

7.

Резерв

5




итого 107 7
ТЕМАТИЧЕСКИЙ ПЛАН

к курсу ГЕОМЕТРИИ 9 класса


п/п

Название темы


Всего ча­сов

Контрольные

работы

1

Векторы

6




2

Метод координат

7

1

3

Соотношения между сторонами и углами треугольника

14

1

4

Длина окружности и площадь круга

9

1

5

Движения

6

1

6
7

Начальные сведения из стереометрии
Повторение

11

15


1

итого 68 5
1   2   3   4   5   6