Главная страница

Протокол № О. А. Плешкова Протокол № от 20 г. 20 г



НазваниеПротокол № О. А. Плешкова Протокол № от 20 г. 20 г
страница1/5
Дата05.04.2016
Размер0.78 Mb.
ТипПротокол
  1   2   3   4   5

Муниципальное общеобразовательное учреждение

«Морозовская средняя общеобразовательная школа»


«Рассмотрено» «Согласовано» «Утверждаю»

на заседании методического объединения Методический совет Директор МОУ «Морозовская СОШ»

учителей естественнонаучных дисциплин Протокол №_____________ __________ О.А. Плешкова

Протокол № _ от «__» _______ 20__г. «__»__________20__г

_______________________ «__»__________20__г

(Подпись)

Рабочая программа учебного курса

«Математика»

для 6 класса

основного общего образования

Составитель: учитель математики

МОУ «Морозовская СОШ»

Сверкунова В.Н.

20__-20__ учебный год


Пояснительная записка

Программа составлена в соответствии с примерной программой В.И. Жохова «Программа. Планирование учебного материала. Математика. 5-6 классы» и является базовой.

Цели обучения математике.

  • овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;

  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе;

  • формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;

  • формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.

Принципиальным положением организации школьного математического образования в основной школе становится уровневая дифференциация обучения. Это означает, что, осваивая общий курс, одни школьники в своих результатах ограничиваются уровнем обязательной подготовки, зафиксированным в настоящей программе, другие в соответствии со своими склонностями и способностями достигают более высоких рубежей. При этом достижение уровня обязательной подготовки становится непременной обязанностью ученика в его учебной работе. В то же время каждый имеет право самостоятельно решить, ограничиться этим уровнем или же продвигаться дальше. Именно на этом пути осуществляются гуманистические начала в обучении математике.

В организации учебно-воспитательного процесса важную роль играют задачи. В обучении математике они являются и целью, и средством обучения и математического развития школьников. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся, основанный на достижении обязательного уровня подготовки. Это способствует нормализации нагрузки школьников, обеспечивает их посильной работой и формирует у них положительное отношение к учебе.

Следует всемерно способствовать удовлетворению потребностей и запросов школьников, проявляющих интерес, склонности и способности к математике.

Целью изучения курса математики в VI классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

НОРМАТИВНАЯ ОСНОВА, РЕАЛИЗАЦИИ ПРОГРАММЫ

  1. Закон об образовании // Вестник образования. — 2004. — № 12.

  2. Федеральный компонент государственного стандарта общего образования. Стандарт основного общего образования по математике // Вестник образования России. — 2004. — № 12. — С. 107 — 119.

  3. Программы для общеобразовательных школ, гимназий, лицеев. Математика. -— М.: Мнемозина, 2009. — С. 14-24.

  4. «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования на 2005/06 учебный год» // Приказ Министерства образования и науки РФ № 93 от 21.10.2004 г.

Общая характеристика предмета

Цели обучения предмету

Изучение математики в 6 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Место предмета в базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики в 6 классе отводится не менее 170 ч. За год из расчета 5 часов в неделю.

Программа рассчитана на обучение учащихся 6 классов общеобразовательных учреждений.

Математическое образование в 6 классах складывается из следующих содержательных компонентов: «Арифметика», «Алгебра», «Геометрия», «Элементы логики, комбинаторика, статистика и теория вероятностей».

Таким образом, в результате изучения программного материала учащиеся получают возможность:

  • развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • развивать логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В результате изучения математики в 6 классе ученик должен:

знать (предметно-информационная составляющая образования):

  • существо понятий алгоритма; приводить примеры алгоритмов;

  • как используются математические формулы и уравнения; примеры их применения для решения математических и практических задач;

  • как потребности практики привели математическую науку к необходимости расширить понятие числа;

  • примеры геометрических объектов;

уметь (деятельностно-коммуникативная составляющая образования):

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные числа;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

  • распознавать геометрические фигуры, изображать геометрические фигуры, выполнять чертежи по условию задач;

  • осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

  • решать линейные уравнения;

  • изображать числа точками на координатной прямой;

  • определять координаты точки на плоскости, строить точки с заданными координатами;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни (ценностно-ориентационная составляющая образования) для:

  • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • выполнения расчетов по формулам, для нахождения нужной формулы в справочных материалах;

  • решения практических задач, связанных с нахождением геометрических величин;

  • анализа реальных числовых данных, представленных в виде диаграмм, таблиц, графиков.

Общеучебные умения, навыки и способы деятельности

В ходе преподавания математики в 6 классе следует обращать внимание на то, чтобы школьники овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • исследовательской деятельности, развитие идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации источников, включая учебную и справочную литературу, современные информационные технологии.

Структура предмета Математика, V—VI классы

1. Делимость чисел (20 ч).

Делители и кратные числа. Общий делитель и общее крат­ное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.

Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству/с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.

Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их; изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылка­ми на определение, правило.

Учащиеся должны уметь разложить число на множители.

- Например, они должны понимать, что 36 = 6 • 6 = 4 • 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.

2. Сложение и вычитание дробей с разными знаменателями (22 ч).

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю, При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.

3. Умножение и деление обыкновенных дробей (31 ч).

Умножение и деление, обыкновенных дробей. Основные задачи на дроби. Основная цель — выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования . умений выполнять действия с алгебраическими дробями.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.

4. Отношения и пропорции (18 ч).

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции,-. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цель — сформировать понятия пропорции, прямой и обратной пропорциональностей величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

5. Положительные и отрицательные числа (13 ч).

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл.

Сравнение чисел. Целые числа. Изображение чисел на пря мой. Координата точки.

Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

6. Сложение и вычитание положительных и отрицательных чисел (11 ч).

Сложение и вычитание положительных и отрицательных чисел.

Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание , чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

7. Умножение и деление положительных и отрицательных чисел (12 ч).

Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как 1/2 , 1/4 , 1/5 , 1/20 .

8. Решение уравнений (13 ч).

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель — подготовить учащихся к выполне­нию преобразований выражений, решению уравнений.

Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения неслож­ных уравнений.

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным.

9. Координаты на плоскости (13 ч).

Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.

Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений.

Основным результатом знакомства учащихся с координат ной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

10. Повторение. Решение
Требования к математической подготовке учащихся

Числа и вычисления

В результате изучения курса математики учащиеся должны: — правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, иррациональное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной дроби);

— сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;

— выполнять арифметические действия с рациональными числами, находить значения степеней и квадратных корней; сочетать при вычислениях устные и письменные приемы, применять калькулятор;

— составлять и решать пропорции, решать основные задачи на дроби, проценты;

— округлять целые числа и десятичные дроби, понимать смысл записи, а = 7,3 ± 0,1, производить прикидку и оценку результата вычислений, выполнять вычисления с числами, записанными в стандартном виде.

Выражения и их преобразования

В результате изучения курса математики учащиеся должны:

  • правильно употреблять термины,«выражение», «тождественное преобразование», понимать их в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «разложить на множители»;

  • составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;

  • выполнять действия со степенями с натуральным и целым показателями, многочленами, алгебраическими дробями; выполнять разложение многочленов на множители вынесением общего множителя за скобки, применением формул сокращенного умножения;

  • выполнять преобразования числовых выражений, содержащих квадратные корни.

Уравнения и неравенства

В результате изучения курса математики учащиеся должны:

  • понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики; правильно употреблять термины «уравнение», «неравенство», «система», «корень уравнения»; «решение системы», понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение, неравенство, систему»;

  • решать линейные, квадратные уравнения и простейшие рациональные уравнения, сводящиеся к ним, системы уравнений с двумя переменными (линейные и системы, в которых одно уравнение второй степени);

  • решать линейные неравенства с одной переменной и их системы, неравенства второй степени;

  • решать текстовые задачи с помощью составления уравнений.

Знания, умения, навыки 6 класс


Теоретические знания

Практические умения

Приобретенные навыки

Делимость чисел

Знание делителей и кратных чисел, общих делителей и кратных. Знание признаков делимости на 2, 3, 5, 10 и умение применять их при работе с числами.

Умение раскладывать натуральные числа на простые множители.

Навыки нахождение НОК и НОД

Сложение и вычитание дробей с разными знаменателями

Знание основного свойства дроби. Сокращение дробей. Сложение и вычитание дробей с разными знаменателями.

Умение сокращать дроби, понимание и умение находить наименьший общий знаменатель нескольких дробей для сравнения, сложения и вычитания

Навыки нахождение НОЗ

Умножение и деление обыкновенных дробей

Умение умножения и деления обыкновенных дробей

Навыки арифметических действий с обыкновенными дробями и решение основных задач на дроби

Отношения и пропорции, понимание прямой и обратной пропорциональности величин, Представление о длине окружности и площади круга, знание геометрических фигур: окружность, круг, шар.

Умение решать задачи с помощью пропорции

Навыки решения задач на ППЗ и ОПЗ

Положительные и отрицательные числа

Усвоение понятия модуля числа. Овладение алгоритмами арифметических действий с положительными и отрицательными числами.

Знание алгоритмов действий с числами с разными знаками.

Навыки действий по алгоритмам

Сложение и вычитание положительных и отрицательных чисел

Умение использовать алгоритмы для действий с числами разных знаков

Навыки сложения и вычитания положительных и отрицательных чисел

Умножение и деление положительных и отрицательных чисел

Умение использовать алгоритмы для действий с числами разных знаков

Навыки арифметических действий с положительными и отрицательными числами.

Решение уравнений


Умение раскрывать скобки, приводить подобные слагаемые, решать линейные уравнения и задачи

Навыки преобразования выражений и решения линейных уравнений

Координаты на плоскости


Умение строить перпендикуляр к прямой и параллельных прямых с помощью угольника и линейки. Построение прямоугольной системы координат на плоскости. Умение различать абсциссу и ординату точки, строить точку по заданным координатам, определять координаты точки, отмеченной на координатной плоскости.

Навыки построения координатной плоскости. Навыки построения точек в координатной плоскости.

Требования к уровню подготовки шестиклассников.

В результате изучения математики ученик должен
знать/понимать

  • существо понятия алгоритма; приводить примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математический язык может описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

  • решать линейные уравнения.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов.

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одну переменную через остальные;

  • решать линейные уравнения;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

Геометрия

уметь

  • распознавать изученные геометрические фигуры, различать их взаимное расположение;

  • изображать изученные геометрические фигуры;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • распознавания логически некорректных рассуждений;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

решения учебных и практических задач, требующих систематического перебора вариантов
  1   2   3   4   5