Главная страница

Протокол № 2012г. 2012г. От 2012г. Рабочая учебная программа



НазваниеПротокол № 2012г. 2012г. От 2012г. Рабочая учебная программа
страница2/7
Дата13.02.2016
Размер0.77 Mb.
ТипПротокол
1   2   3   4   5   6   7

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ



Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие среднюю (общую) школу, и достижение которых является обязательным условием положительной аттестации ученика за курс средней школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».

Очерченные стандартом рамки содержания и требований ориентированы на развитие учащихся и не препятствуют достижению более высоких уровней.

В результате изучения математики на базовом уровне ученик 10-11 классов должен знать/понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и иссле­дованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и раз­вития математической науки; историю развития понятия числа, создания математического ана­лиза, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира.

АЛГЕБРА

уметь:

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рацио­нальным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции;

- вычислять значения числовых и буквенных выражений, осуществляя необходимые подста­новки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для практических расчетов по формулам, включая формулы, содержащие степени, радика­лы и тригонометрические функции, используя при необходимости справочные мате­риалы и простейшие вычислительные устройства.
ФУНКЦИИ И ГРАФИКИ

уметь:

- определять значение функции по значению аргумента при различных способах задания функции;

- строить графики изученных функций;

- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

- решать уравнения, простейшие системы уравнений, используя свойства функций и их гра­фиков;

использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

уметь:

- вычислять производные и первообразные элементарных функций, используя справочные материалы;

- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

- вычислять в простейших случаях площади с использованием первообразной; использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь:

- решать рациональные, показательные и логарифмические уравнения и неравенства, про­стейшие иррациональные и тригонометрические уравнения, их системы;

- составлять уравнения и неравенства по условию задачи;

- использовать для приближенного решения уравнений и неравенств графическим методом;

- изображать на координатной плоскости множества решений простейших уравнений и их систем.


КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ




1. Оценка письменных контрольных работ обучающихся по математике.



Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
1   2   3   4   5   6   7