Главная страница

Пояснительная записка Рабочая программа по предмету «Математика»



НазваниеПояснительная записка Рабочая программа по предмету «Математика»
страница1/4
Дата29.02.2016
Размер0.54 Mb.
ТипПояснительная записка
  1   2   3   4


Пояснительная записка

Рабочая программа по предмету «Математика» в 9 классе составлена в соответствии с требованиями Федерального компонента Государственного образовательного стандарта основного общего образования (Приказ Министерства образования РФ от 05.03.2004г.).

Данная программа адресована обучающимся 9а класса, изучающим предмет «Математика» на базовом уровне.

Обучение математике в 9 классе направлено на достижение следующих целей:

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

  • Интеллектуальное развитие, продолжение формирований качеств личности, свойственных математической деятельности: ясности и точности мышления, критичности мышления,

  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

  • Воспитание культуры личности, внимания как свернутого контроля, отношения к математике как к части общечеловеческой культуры.

Целью изучения курса математики в 9 классе является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, информатика и другие), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществления функциональной подготовки школьников.
Формы контроля:

  • Дифференцированные самостоятельные работы, содержащие задания обязательного и повышенного уровня, рассчитанные на 5-20 минут, оцениваемые отметкой «2» - не сделан обязательный уровень, «3» - правильно выполнен обязательный уровень, «4» - если допущена одна ошибка или несколько неточностей, «5» - правильно выполнены все задания или допущена неточность, не приведшая к неправильному решению.

  • Дифференцированные контрольные работы, содержащие задания обязательного и повышенного уровня, время выполнения – 40 минут, оцениваемые отметкой «2» - не сделан обязательный уровень, «3» - правильно выполнен обязательный уровень, «4» - если допущена одна ошибка или несколько неточностей, «5» - правильно выполнены все задания или допущена неточность, не приведшая к неправильному решению.

Место предмета в базисном плане

На изучение математики в 9 классе отводится 5 часов в неделю из них на изучение алгебры 3 часа в неделю, всего 102 часа и на изучение геометрии 2 часа в неделю, всего 68 часов. УМК:

«Алгебра 9 класс» авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.В. Суворова. Москва, «Просвещение» 2014г.

«Геометрия, 7 - 9» авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. М.: Просвещение, 2014г.

Требования к уровню подготовки учащихся:

Требования к результатам обучения направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, востребованными в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

Рубрика «Знать/понимать» включает требования к учебному материалу, которые усваиваются и воспроизводятся учащимися.

Рубрика «Уметь» включает требования, основанные на более сложных видах деятельности, в том числе творческой: объяснять, изучать, распознавать и описывать, выявлять, сравнивать, определять, анализировать и оценивать, проводить самостоятельный поиск необходимой информации и т.д.

В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления,

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом

  • изображать числа точками на координатной прямой;

  • распознавать арифметические и геометрические прогрессии;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции,

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n у= а(х- m) 2), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики, статистики

и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

Геометрия

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Формы организации учебного процесса:

индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.

Формы контроля:

самостоятельная работа, контрольная работа, наблюдение, тестирование, работа по карточке.

ОСНОВНОЕ СОДЕРЖАНИЕ

Свойства функций. Квадратичная функция (22 ч)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2+ bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2+ bх + с>0 ах2+ bх + с<0, где а0.

Уравнения и неравенства с одной переменной (14 ч)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых уравнений с одной переменной. Выработать умение решать простейшие системы уравнений, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

Уравнения и неравенства с двумя переменными (17 ч)

Цель: выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными и неравенства с двумя переменными, текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

Прогрессии (15 ч)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых nчленов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.


Элементы комбинаторики и теории вероятностей (13 ч)

Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Глава 6. Повторение (21 час.)

Цель: повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.

Векторы. Метод координат (18 ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (12 ч)

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Длина окружности и площадь круга (12 ч)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

Движения (8 ч)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Начальные сведения из стереометрии (8 ч)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их объемов.

Цель: дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Об аксиомах геометрии (2 ч)

Беседа об аксиомах геометрии.

Цель: дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

Повторение. Решение задач (8 ч)

Цель: повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7-9 классов.

Планирование учебного материала



Содержание материала

Количество часов




Алгебра




1

Глава I. Квадратичная функция

24

2

Глава II. Уравнения и неравенства с одной переменной

14

3

Глава III. Уравнения и неравенства с двумя переменными

17

4

Глава IV. Арифметическая и геометрическая прогрессии

15

5

Глава V. Элементы комбинаторики и теории вероятностей

13

6

Повторение

19







102




Геометрия




7

Глава IX.Векторы

9

8

Глава X.Метод координат

9

9

Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

12

10

Глава XII. Длина окружности и площадь круга

12

11

Глава XIII.Движения

8

12

Глава XIV. Начальные сведения из стереометрии

8

13

Об аксиомах стереометрии

2

14

Повторение

8







68
  1   2   3   4