8 – сумма, 5 – одно из слагаемых, другое слагаемое неизвестно.
2. Определение «вычитания».
Сначала формулирует учитель, затем дети читают в учебнике несколько раз и рассказывают друг другу это определение. Вывешивается плакат.
Ученики читают в учебнике и запоминают. Затем выясняют, что уменьшаемое не может быть меньше вычитаемого.
Вычитание – действие I ступени.
Что показывает разность? Вычитание на числовом луче.
Как правильно говорить? (с. 55).
III. Упражнения по теме урока.
1. № 242 (устно), 243 (устно), 244 (устно), 253, 255, 246.
2. Повторение (№ 280 (а), 281 (а)). К доске вызываются два ученика.
IV. Итог урока.
Ответить на вопросы:
а) Какое действие называется вычитанием?
б) Какое число называется уменьшаемым? Вычитаемым? Разностью?
в) Как узнать, насколько одно число больше другого?
г) С какими новыми терминами познакомились? Подчеркните их в тетради.
Вывешивается плакат, обращается внимание на правильное написание терминов.
Тест
1) В примере 48 – 16 = 32 число 16 является…
а) разностью; б) уменьшаемым; в) вычитаемым.
2) Разность двух чисел 65 и 37 равна…
а) 32; б) 28; в) 13.
V. Домашнее задание: п. 7 (первая часть), № 286, 292 (а), 293. В математический словарь занести слова: вычитание, уменьшаемое, вычитаемое, разность.
Урок № 21 Вычитание. Свойства вычитания (п. 7)
Цели: научить учащихся вычитать сумму из числа, из суммы число.
Оборудование: плакат «Счет и вычитание – основа порядка в голове» (И. Песталоцци).
Ход урока
I. Проверка домашнего задания (выполнение и правильность работы проверяет консультант).
II. Устные упражнения.
№ 270, 272 (в, г), 274 (б), 275.
III. Изучение нового материала (обратить внимание на девиз урока).
1. Рассмотреть пример: 14 – (5 + 4) =
Как можно получить результат?
I способ: 14 – (5 + 4) = 14 – 9 = 5.
II способ: (14–5) – 4 = 5
Предложите учащимся самим сформулировать свойство, затем прочитать о нём в учебнике.
Запись в тетради:
I свойство
Вычитание суммы из числа: 14 – (5 + 4) = (14 – 5) – 4 = 5.
II свойство
Вычитание числа из суммы: (14 + 3) – 5 = (14 – 5) + 3 = 12.
III свойство
Вычитание из числа нуля: 10 – 0 = 10.
IV свойство
Вычитание из числа этого же числа: 10 – 10 = 0.
IV. Физкультминутка для пальцев рук, глаз и спины.
V. Закрепление.
1. Сформулировать свойства вычитания.
2. № 254, 262 (устно), 259 (разобрать оба способа).
3. Самостоятельно у доски пять учеников решают № 245, 249, 280 (б), 284 (1), 284 (2). Остальные решают самостоятельно в тетрадях.
VI. Итог урока.
Тест
1) Разность чисел (563 + 388) – 263 равна…
а) 125; б) 588; в) 631.
2) Разность чисел 8381 – (1623 + 6381) равна…
а) 7138; б) 5345; в) 377.
VII. Домашнее задание: п. 7, № 287, 290 (а, б), 292.
Урок № 22. Вычитание чисел в столбик.
Решение задач с использованием
действия вычитания (п. 7)
Цели: научить учащихся правильно записывать и вычитать числа в столбик, решать задачи с применением действия вычитания.
Оборудование: кодоскоп, кодопозитивы для устных упражнений, опорный конспект «Вычитание».
Ход урока
I. Проверка домашнего задания (консультанты класса проверяют и докладывают о результатах выполнения домашнего задания).
II. Устные упражнения (проводятся совместно с учениками).
Первый ученик: Умножьте три десятка на два десятка.
Умножьте три сотни на три десятка.
Учитель: Какие фигуры вы видите на чертеже? (На доске заранее начерчены фигуры.)
Как найти периметр прямоугольника? (Рассмотреть разные способы.) Как найти периметр квадрата?
Второй ученик: Найдите правило нахождения числа, стоящего в средней клетке первой строки, и по этому правилу вставьте в пустую клетку пропущенное число (кодопозитивы):
III. Изучение нового материала.
1. № 251, 252 (решаются с комментированием с места).
2. Вызываются четыре ученика к доске (№ 256 (а), 256 (б), 256 (в), 256 (г)).
3. Вызываются еще четыре человека (№ 258 (а), 258 (б), 260, 261).
Примечание: для задачи № 260 рассмотреть два способа решения.
4. № 257 (а) – устно. Вставьте нужные цифры. 5. Повторение.
Вариант I – № 284 (1)
Вариант II – № 284 (2).
IV. Итог урока.
Беседа по опорному конспекту (вывешивается опорный конспект «Вычитание»).
V. Домашнее задание: п. 7, № 289, 290 (в, г), 294. Знать опорный конспект.
Урок № 23 Решение задач с использованием действия вычитания (п. 7)
Цели: научить решать задачи, в которых используется действие вычитания.
Оборудование: плакаты для устных упражнений.
Ход урока
I. Устные упражнения
1. Среди чисел, записанных в правой части, найдите значение каждой из сумм. Суммы
| Значения сумм
| 1693 + 789
57854 + 789
131963 + 789
1894 + 789
|
| 132752
2683
58643
2482
| 2. Решите задачу (плакат).
Незнайка бегает вокруг клумбы со скоростью 50 м/мин. Где он будет находиться через две минуты после начала движения, если будет бежать из точки А:
1) По часовой стрелке?
2) Против часовой стрелки?
3) Где будет Незнайка через 4 минуты после начала движения?
4) Сколько пройдет времени, пока он оббежит клумбу 2 раза?
II. Работа по теме урока.
1. Объясняется тема урока, и учитель приводит высказывание Пойа Д: «Недостаточно лишь понять задачу, необходимо желание решить её. Без сильного желания решить трудную задачу невозможно, но при наличии такового возможно. Где есть желание, найдется путь!».
2. К доске вызывается четыре ученика.
Каждому дается задание (№ 256 (д), 256 (е), 258 (в), 262 (б)).
Ученики решают, а затем учитель вместе с классом сверяют правильность решений.
3. № 261 (решение вторым способом можно рассмотреть устно), № 263 (а), 267.
4. Самостоятельная обучающая работа (ДМ В-1 № 41, 46, 50).
а) В одном мотке 138 м веревки, это на 29 м больше, чем во втором. Сколько метров веревки в двух мотках?
б) Выполнить действия наиболее простым способом, используя свойства вычитания:
(357 + 289) – 157 643 – (243 +398)
(863 + 471) – 371 876 – (398 +476)
в) В каких случаях сумма двух чисел равна одному из них?
III. Итог урока.
1. Рост Кати 1 м 75 см. Вытянувшись во весь рост, она спит под одеялом, длина которого 155 см. Сколько сантиметров Кати торчит из-под одеяла?
2. С одного дерева сняли 164 груши, а со второго – 5 мальчиков, каждый из которых, сидя на дереве, съел по 20 груш. После этого со второго дерева сняли ещё 82 груши. Сколько груш было на обоих деревьях?
IV. Домашнее задание: п. 7, № 288 (д, е), 291, 296 (а, б). Повторить опорный конспект.
Урок № 24 Самостоятельная работа
Оборудование: карточки для самостоятельной работы, чертёж к № 265.
Ход урока
I. Устные упражнения
№ 282 (а, в), 265 (решить задачу по готовому чертежу).
II. Работа на тему урока (ДМ В-2, № 47, 49, 46, 50).
Вариант I
1) Выполните действия, используя свойства вычитания:
а) (2593 +1389) – 1593; в) 3697 – (2697 + 899);
б) (4597 +3899) – 3899; г) 9543 – (3989 + 1543).
2) Модель телебашни состоит из трёх блоков. Высота нижнего блока 1 м 05 см, среднего – на 15 см короче нижнего. Какова высота верхнего блока, если высота модели 3 м?
3) Выполните вычитание:
а) 7002065440 – 6919278416; б) 9000551000 – 8667395.
4) В каких случаях разность двух чисел равна каждому из них?
Вариант II
1) Выполните действия наиболее простым способом, используя свойства вычитания:
а) (8978 + 2859) – 1859; в) 5836 – (2836 + 989);
б) (4937 +3887) – 4937; г) 8381 – (1623 + 6381).
2) Доспехи средневекового рыцаря весят 27 кг 500 г, а меч на 18 кг 400 г легче. Сколько весит щит, если полное вооружение рыцаря весит 50 кг?
3) Выполните вычитание:
а) 8003096320 – 7838107048; б) 3500400300 – 5897564.
4) В каких случаях сумма двух чисел равна каждому из них?
III. Домашнее задание.
1) В книге три рассказа. Первый рассказ занимает столько страниц, сколько второй и третий вместе. Второй рассказ занимает 55 страниц, что на 15 страниц больше, чем занимает третий. Сколько страниц в книге?
2) Насколько число 51248 больше числа 23356 и меньше числа 63137?
3) Периметр треугольника BDK равен 64 см. Сторона BD = 28 см, в сторона ВК на 11 меньше стороны BD. Найдите длину стороны DK.
4) Подготовиться к контрольной работе.
Урок № 25 Контрольная работа (п. 6, 7)
Ход урока
Вариант I
1) Выполните действия:
а) 7632547 + 48399645; в) 48665247 – 9958396.
2) В красной коробке столько игрушек, сколько в белой и зеленой вместе. В зеленой коробке 45 игрушек, что на 18 игрушек больше, чем в белой. Сколько игрушек в трёх коробках?
3) Насколько число 48234 больше числа 42459 и меньше числа 58954?
4) Периметр треугольника МКР равен 59 см. Сторона МК равна 24 см, сторона КР на 6 см меньше стороны МК. Найдите длину стороны МР.
5) На прямой линии посажено 10 кустов так, что расстояние между любыми соседними кустами одно и то же. Найдите это расстояние, если расстояние между крайними кустами 90 дм.
Вариант II
1) Выполните действия:
а) 6523436 +57498756; в) 35387244 – 8592338.
2) Купили шариковую ручку за 34 рубля, альбом для рисования, который дешевле на 16 рублей, и записную книжку, которая стоит столько, сколько стоят альбом и ручка вместе. Сколько стоит вся покупка?
3) На сколько число 26012 меньше числа 49156 и больше числа 17381?
4) Периметр треугольника МNC равен 66 см. Сторона NC равна 16 см, и она меньше стороны МС на 15 см. Найдите длину стороны МN.
5) На прямой отмечено 30 точек так, что расстояние между двумя любыми соседними точками равно 5 см. Каково расстояние между крайними точками?
Домашнее задание: принести циркули.
Урок № 26 Числовые выражения (п. 8)
Цели: научить составлять выражения, читать их и находить значение числового выражения.
Оборудование: сигнальные карточки, циркуль демонстрационный.
Ход урока
I. Анализ результатов и ошибок контрольной работы.
При проверке контрольных работ учитель составляет индивидуальные задания, которые на последующих уроках можно включать в устные упражнения.
II. Устные упражнения.
1. Даны числа: 82, 29, 50, 35, 64, 75. Дополнить их до 100.
2. На координатном луче отмечены точки О(0), М(18), К(9). На сколько единичных отрезков отрезок ОМ длиннее отрезка ОК? Во сколько раз отрезок ОК короче отрезка ОМ?
3. Верно ли утверждение (если верно, показывается сигнальная карточка зеленым цветом, если ложное – красным цветом):
а) если уменьшаемое увеличить на 10, то разность увеличится на 10;
б) если вычитаемое увеличить на 10, то и разность увеличится на 10;
в) если уменьшаемое и вычитаемое увеличить на 10, то разность не изменится.
III. Изучение нового материала.
1. Задача. Поезд шёл двое суток. В первые сутки он прошёл 980 км, а во вторые – на 50 км больше. Сколько километров прошёл поезд за двое суток?
На доске записано краткое содержание условия задачи, решение разбирается; можно сделать такие записи:
1) (980 + 50) км – прошёл поезд за вторые сутки.
2) 980 + (980 + 50 ) км – прошёл поезд за два дня.
980 + (980 + 50) – числовое выражение.
2. Выполним действия, получим: 2010 км.
2010 – значение числового выражения. Как получилось это число? (Выполнили указанные действия.)
Учащиеся читают определение в учебнике, запоминают и рассказывают своему соседу.
3. С какими новыми математическими терминами познакомились? (Числовые выражения, значение числового выражения.)
Числовые выражения можно прочитать так:
Сумма чисел 38 и 44: 38 + 44.
Разность чисел 62 и 20: 62 – 20.
IV. Физкультминутка.
V. Закрепление.
1. № 297 (а, в, д), № 299 (а, в, д), № 300 (а) – устно.
№ 303 (а), 313 (с использованием циркуля).
2. Повторение: № 325 (а).
VI. Домашнее задание: п. 8 (1-я часть), № 328 (а, в), № 329 (а), № 331 (в), № 335 (а). В математический словарь записать слова: числовое выражение, значение числового выражения.
VII. Итог урока.
1. Прочитать запись: (40 + 2) – (12 + 7); (28 + 7 ) + (36 – 21).
2. В равенстве 42 – 4 = 38 как называется 42 – 2? и 38?
3. Найдите значение выражения (32 + 18 ) – (43 – 13).
4. Приведите пример числового выражения. Как найти значение числового выражения?
Урок № 27 Буквенные выражения
Цели: научить формулировать определение буквенного выражения, объяснить значения буквы, научить записывать решение задачи в виде числового или буквенного выражений.
Оборудование: кодопозитивы с домашним заданием; № 328 (а, б), 329.
Ход урока
I. Проверка домашнего задания.
1. Сверить решения домашних примеров (по кодоскопу). (Можно обменяться тетрадями с соседом по парте.)
№ 328 а) – 1) 25; 2) 510; 3) 535.
б) – 1) 4392; 2) 36; 3) 14.
№ 329. 5 + (5 + 8) + (5 + 5 + 8 – 6) = 30.
Можно задать уточняющие вопросы: что обозначает сумма (5 + 8)? Сумма (5 + 5 +8)? Выражение (5 + 5 + 8 – 6)?
№ 335 (а) (85 + 47) 2 или 85 2 + 47 2. Какое выражение лучше?
II. Устные упражнения.
№ 315 (а, б), 317, 320.
III. Изучение нового материала.
Задача 1.
Составим числовое выражение: 980 + (980 + 65).
Задача 2.
Чем отличаются выражения?
Прочитайте в учебнике, как называются такие выражения.
Если вместо m поставить число, то получится числовое выражение.
Найдите в учебнике, как называются числа, которыми заменяют букву.
Приведите пример буквенного выражения.
IV. Закрепление.
1. № 300 (устно), 301 (устно), 298, 299 (б, г, е).
№ 306, 310 (устно), 314.
2. На повторение № 325 (в), 326 (а).
V. Домашнее задание: п. 8, № 330 (б, в), 331 (б, в), 333 (б), 336 (а).
VI. Итог урока.
Запишите правую часть равенства.
1) Переместительное свойство сложения: а + b =
2) Сочетательное свойство сложения: (а + b) + с =
3) Свойство нуля при сложении: а + 0 =
4) Свойство нуля при вычитании: а – 0 =
Урок № 28 Числовые и буквенные выражения (п. 8)
Цели: научить записывать решение задачи в виде буквенных выражений и находить значение выражений.
Оборудование: кодопозитивы с домашним заданием.
Ход урока
I. Проверка домашнего задания.
На доске записаны ответы к домашним упражнениям.
Учитель показывает ответ, ученики отвечают, к какому он заданию.
II. Устные упражнения.
№ 315 (в, г, д), 319.
III. Работа на тему урока.
1. № 302 (устно), 307, 309, 311.
2. Вызываются три ученика к доске.
1) № 297 (б);
2) № 297 (г);
3) № 297 (е).
3. На повторение.
По вариантам (с предварительным разбором)
1) № 327 (1);
2) № 327 (2).
IV. Итог урока.
Тест
1) Выражение (234 + b) 63 называется:
а) буквенным; б) числовым; в) другое название.
2) Женя на рыбалке поймал 13 рыб, а Саша на m рыб больше. Сколько рыб поймали Саша и Женя?
а) 13 + m; б) 13 + (13 + m); в) (13 + m) 2.
3) Чему равно значение выражения
(10 – 9 + 8 – 7 + 6 – 5 + 4 – 3 + 2 – 1) 1?
а) 6; б) 5; в) 0; г) правильного ответа нет.
V. Домашнее задание: п. 8, вопросы; № 330 (г), 334, 336 (б). В математический словарь занести слова: буквенные выражения, значение буквенного выражения.
Урок № 29 Самостоятельная работа
Цели: дать возможность учащимся проверить свои знания, проконтролировать степень усвоения материала, выявить пробелы.
Оборудование: карточки с заданиями по вариантам.
Ход урока
I. Повторение теоретического материала.
1) Какие выражения вы знаете?
2) Как найти значение числового выражения?
3) Как из числа вычесть сумму двух чисел?
4) Как из суммы двух чисел вычесть число?
5) Вычислите устно (вписать в клеточки «убежавшие» цифры): –
| 137
895
|
| –
| 000 0
18
|
| 57
|
|
| 3769
| II. Работа по теме урока.
Вариант I
1) Найдите значение выражения а : 27 + 37,
если а = 729; а = 1053.
2) Какой путь прошел поезд за 8 часов, если он шел со скоростью m км/ч?
3) В двух товарных составах р вагонов. В одном из них 116 вагонов. Сколько вагонов в другом составе?
4) Какие трёхзначные числа можно написать, используя только цифры 0 и 2?
Вариант II
1) Найдите значение выражения х : 43 + 64,
если х = 1849; х = 2537.
2) Какой путь прошёл пешеход, если он шёл 7 часов со скоростью км/ч?
3) В двух железнодорожных цистернах n т нефти. Сколько тонн нефти в первой цистерне, если во второй цистерне 60 т?
4) Какие трёхзначные числа можно написать, используя только цифры 0 и 3?
III. Домашнее задание: п. 8, повторить п. 1–2. Решить другой вариант. Урок № 30 Буквенная запись свойств сложения
и вычитания (п. 9)
Цели: научить записывать свойства сложения и вычитания при помощи букв, применять свойства сложения при выполнении упражнений.
Оборудование: циркуль, плакат для устных упражнений, ксерокопии к № 340 (а, б).
Ход урока
I. Итоги самостоятельной работы, разбор основных ошибок.
II. Устные упражнения.
а) Напишите на корпусе каждой лодки такое число, чтобы равенство было верным.
Плакат № 1 (вместо лодки можно сделать прорезь, чтобы писать на доске).
Плакат № 2
Найдите на координатном луче числа, записанные на корпусах лодок.
Напишите на парусах лодок буквы, которые указывают на эти числа.
Прочитайте слово. Что оно обозначает?
(Получилось слово «регата» – это спортивные соревнования из серии гонок на гребных, парусных или моторных судах).
|