Примеры.
Выполнение этого задания проверяется у доски, записью цепочки неравенств.
Четвертый ученик вывешивает плакат.
1) Записать координаты точек.
2) Отметьте на координатном луче числа: 1, 6, 9, 12 (можно заранее начертить на доске или использовать магнитную доску).
Пятый ученик предлагает написать самостоятельную работу (раздает карточки с заданием).
Вариант I
| Вариант II
| 1. Отметьте на координатном луче точки: А(5), В(2), С(4), D(8).
2. Напишите вместо звёздочек знак «>» или «<» так, чтобы было верное неравенство:
а) 204 * 2004;
б) 554 * 1;
в) 0 * 512.
3. Сколько всего четырехзначных чисел, оканчивающихся цифрой 3?
4. № 149 (а).
| 1. Отметьте на координатном луче точки: М(5), N(6), Р(3), Q(9).
2. Напишите вместо звёздочек знак «>» или «<» так, чтобы было верное неравенство:
а) 123 * 1230;
б) 1 * 341;
в) 648 * 0.
3. Сколько всего четырёхзначных чисел, оканчивающихся цифрой 7?
4. № 149 (б).
|
Ученик собирает выполненные работы и затем вместе с учителем после уроков проверяет.
III. Домашнее задание: п. 1–5, № 170, 173, 174. Подготовиться к самостоятельной работе.
Урок № 13
Самостоятельная работа (п. 1–5)
Цели: выявить пробелы в знаниях учащихся по темам.
Ход урока
I. Тест в двух вариантах написать на доске или на карточках.
Вариант I
1. Отметить на координатном луче точки, координаты которых 6, 2, 5, 9. Записать каждую точку и её координату.
2. Напишите вместо звездочки < или > так, чтобы было верное неравенство:
а) 307 * 3007; б) 444 * 1; в) 0 * 376.
3. Начертите прямую СК, луч АЕ и отрезок MN так, чтобы прямая СК пересекала отрезок MN и не пересекала луч АЕ, а луч АЕ пересекал бы отрезок MN.
4. В классе учились Вера, Галя, Нина, Марина и Оля. Все эти девочки родились в разные дни января одного года. Младшая из них родилась 27 января. Известно, что Оля старше Гали, но моложе Марины, а Вера моложе Нины, но старше Марины. Какого числа родилась каждая из девочек, если Нина родилась 23 января?
Вариант II
1. Отметить на координатном луче точки, координаты которых 9, 12, 11, 3. Записать каждую точку и её координату.
2. Напишите вместо звездочки знак < или > так, чтобы было верное неравенство:
а) 70007 * 7007; б) 465 * 1; в) 0 * 124.
3. Начертите прямую АВ, луч СЕ и отрезок MN так, чтобы прямая АВ пересекала луч СЕ и отрезок MN, а луч СЕ пересекал бы отрезок MN.
4. Пять подруг Аня, Ира, Таня, Катя и Маша родились в один год в ноябре. Самая старшая из них родилась 26 числа. Известно, что Таня моложе Иры, но старше Кати, а Аня моложе Маши, но старше Иры. В какой день ноября родилась каждая из девочек?
Примечание: Работа рассчитана на 35 минут урока; после проверки учитель ставит оценки в журнал по желанию учащихся.
II. Домашнее задание: п. 1–5, № 176, 181. С закрытой тетрадью на черновике прорешать, а потом проверить № 79, 118, 120.
Урок № 14
Контрольная работа (п. 1–5)
Оборудование: карточки с текстом контрольной работы; карточки с дополнительными заданиями для тех, кто контрольную работу решил раньше.
Ход урока
Вариант I
1. Начертите отрезок МХ и отметьте на нём точку С. Измерьте отрезки МХ и СХ.
2. Постройте отрезок АВ = 6 см 2 мм и отметьте на нём точки D и С так, чтобы точка D лежала между точками С и В.
3. Отметьте точки Р и К и проведите луч КР. Начертите прямую МN, пересекающую луч КР, и прямую АВ, не пересекающую луч КР.
4. На координатном луче, единичный отрезок которого равен длине одной клетки тетради, отметьте точки М(3), Р(5), С(7) и N(10). На этом же луче отметьте точку Y, если её координата – натуральное число, которое меньше 10, но больше 8.
5. Запишите число, оканчивающееся цифрой 8, которое больше любого трёхзначного числа и меньше 1018.
Вариант II
1. Начертите отрезок МY и отметьте на нём точку D. Измерьте отрезки МD и DY.
2. Постройте отрезок DC = 3 см 4 мм и отметьте на нём точки А и В так, чтобы точка В лежала между точками D и А.
3. Отметьте точки M и N и проведите прямую MN. Начертите луч АВ, пересекающий эту прямую, и луч DC, не пересекающий её.
4. На координатном луче, единичный отрезок которого равен длине одной клетки тетради, отметьте точки С(4), D(6), Е(8) и F(11). На этом же луче отметьте точку М, если её координата – натуральное число, которое больше 11, но меньше 13.
5. Запишите число, оканчивающееся цифрой 7, зная, что оно меньше пятизначного числа и больше 9987.
Дополнительные задачи
Вариант I
Рассмотрите рисунок.
1. Заполните пропуски. На чертеже даны:
отрезки_________________;
лучи____________________;
прямые_________________.
2. Запишите в кружке букву «И», если высказывание истинное, и букву «Л», если оно ложное. Если потребуется, то сделайте дополнительные построения.
а) Точка Х расположена на прямой MN.
б) Луч EF проходит через точку Х.
в) Точка Х принадлежит лучу KZ.
г) Точка Х расположена на отрезке CD.
Вариант II
Рассмотрите рисунок.
1. Заполните пропуски. На чертеже даны:
отрезки__________________;
лучи____________________;
прямые_________________.
2. Запишите в кружке букву «И», если высказывание истинное, и букву «Л», если оно ложное. Если потребуется, то сделайте дополнительные построения.
а) Точка Y расположена на прямой АВ.
б) Луч CD проходит через точку Y.
в) Точка Y принадлежит лучу EF.
г) Точка Y расположена на отрезке KZ.
Домашнее задание: решить другой вариант.
Урок № 15
Сложение натуральных чисел и его свойства (п. 6)
Цели: повторить и углубить знания: как называются числа при сложении, свойства сложения, сложение чисел и длин отрезков (укрупнённый блок теории).
Оборудование: опорный конспект; план изложения нового материала (записан на доске); координатный луч к № 189. Ход урока
I. Итоги контрольной работы.
1. Анализ основных ошибок.
2. Объяснение трудных для учащихся заданий.
3. Отметить лучшие работы.
Примечание: при проверке контрольных работ для каждого ученика составить индивидуальные задания, после их выполнения – проверить.
II. Устные упражнения.
№ 212 (а, б), 215, 219 (а).
Задача из материалов Международного конкурса «Кенгуру».
Сколько из следующих чисел уменьшаются, если их прочитать справа налево: 1991, 2323, 2112, 3131, 2332, 5252?
Варианты ответов:
а) 0; b) 1; с) 2; d) 4; e) 5.
II. Изучение нового материала.
Объявляется тема урока (учащиеся записывают в тетради).
Учитель: Сегодня вы должны научиться отвечать на эти вопросы.
План
1) Что значит сложить два числа? (Показать на примере, как это записывается.)
2) Как называются числа при сложении?
3) Свойства сложения:
а) переместительное свойство;
б) сочетательное свойство;
в) свойство нуля при сложении.
4) Сложение длин отрезков.
5) Определение периметра многоугольника.
(Работу можно построить так: ученики читают вопрос плана, находят его в учебнике и составляют с учителем опорный конспект по этой теме.)
IV. Физкультминутка.
V. Закрепление.
1. Теоретический материал повторяется по опорному конспекту.
2. Устно № 182, 183, 185, 188.
3. Вопрос классу: для чего нужны человеку свойства сложения? (Выполнить устно № 188, 189.)
VI. Итог урока (работа по опорному конспекту).
VII. Домашнее задание: п. 6, уметь воспроизводить опорный конспект (числа для примеров можно брать другие), № 223, 226, 229. В математический словарь занести слова: сумма, слагаемое, переместительное и сочетательное свойства сложения.
Урок № 16
Сложение натуральных чисел и его свойства (п. 6)
Цели: научить складывать числа на координатном луче, применять свойства сложения при нахождении суммы чисел.
Оборудование: таблица для устных упражнений.
Ход урока
I. Проверка домашнего задания.
Воспроизвести опорный конспект (если нет возможности посадить учеников по одному, то на стол между учащимися поставить портфель).
II. Устные упражнения.
1. № 212 (в), 214 (а), 216.
2. Вписать в таблицу время прибытия поезда при его задержке в пути:
Время прибытия
| По расписанию
| Часы
10
| Минуты
35
| при задержке на:
|
|
| 10 минут
|
|
| 25 минут
|
|
| 45 минут
|
|
| 2 ч 15 минут
|
|
|
III. Работа по теме урока.
1. № 189, 190, 191, 192 (а, б);
2. № 193 – комментирование с места.
3. На повторение № 224.
IV. Итог урока.
Тест
1. Какое из чисел больше?
60000 + 9000 + 900 + 9 или 70000 + 1000 + 100 + 10 + 1.
а) первое; б) второе; в) числа равны; г) не знаю.
2. Какое из четырёх чисел самое большое.
1) 954321876; 3) 999999999;
2) 1119998880; 4) 1000000000.
а) 1); б) 2); в) 3); г) 4).
3. Одна сторона треугольника равна 15 см, вторая на 4 см длиннее, а третья на 4 см короче первой. Чему равен периметр треугольника?
а) 37 см; б) 53 см; в) 45 см; г) 23 см.
VI. Домашнее задание: п. 6, № 231 (а, б), 230, 179.
Урок № 17
Сложение натуральных чисел и его свойства (п. 6)
Цели: научить находить длину отрезка по его частям, периметр многоугольника, использовать свойства сложения при вычислении натуральных чисел.
Оборудование: листочки для ответов на устном счете; ксерокопии с таблицей к № 195.
Ход урока
I. Проверка домашнего задания (соседи по парте обмениваются тетрадями, и каждый проверяет тетрадь соседа).
№ 231 (на доске заранее записано для каждого примера).
№ 230 (фронтально по вопросам).
Какая комната имеет площадь 10 м2? (Первая.)
Площадь какой комнаты знаем? (Второй: 10 +5 = 15 м2.)
Какова площадь третьей комнаты? (15 + 8 = 23 м2.)
Как найти площадь всей квартиры?
№ 179 (аналогично).
II. Устные упражнения (№ 212 (г), 214 (б), 218).
На столах учащихся лежат листы для ответов.
№ 212 (г)
№ 214 (б)
№ 218 а) ___________ б) ______________
Подписать листочки на обороте и сдать.
III. Работа по новой теме.
№ 205
Сначала установить условие задачи: какая фигура дана? (Отрезок АК.)
Ученик решает у доски, остальные в тетрадях.
Анализ задачи
1) Известна ли длина отрезка? (Нет.)
2) Где взята точка В? (На отрезке.)
3) На равные ли части делит точка В отрезок АК? (Нет.)
4) Выясняется, какой отрезок длиннее.
В результате анализа задачи появляется решение.
1) ВК = 27 мм + 30 мм = 57 мм.
2) АК = АВ + ВК; АК = 27 мм + 57 мм = 84 мм.
Ответ: АК = 84 мм. № 209
Решение
1) DK = 18 + 2 = 20 см
2) КС = 20 +6 = 26 см
3) Р = DC + DK + KC
P = 18 + 20 + 26 = 64 (см).
Ответ: 64 см.
№ 207 (учитель делает чертеж на доске, в тетради ученики записывают вычисления).
(86 + 9) 2 = 190 м.
№ 199 (на столе у каждого ученика лежат ксерокопии таблицы, ученики заполняют их).
№ 193 (б) – устно, № 187 (с комментированием с места), № 197 (в тетради можно записать так:
V. Итог урока.
Тест
1. Одна сторона прямоугольника равна 4 см, а другая – 7 см. Найдите периметр.
а) 23 см; б) 22 см; в) 11 см
2. АС = 11 см, ВС = 7 см, АВ – ?
а) 18 см; б) 4 см; в) 20 см.
3. Не выполняя сложения, ответьте на вопрос, какая из сумм больше: 361 + 857 или 267 + 567?
а) первая; б) равны; в) вторая.
VI. Домашнее задание: п. 6, № 217, 231 (в, г), 235 (а), 181 (по желанию). В математический словарь занести слово периметр.
Урок № 18 Разложение числа по разрядам.
Сложение натуральных чисел и его свойства (п. 6)
Цели: научить раскладывать число по разрядам, записывать и складывать числа в столбик.
Оборудование: таблица классов и разрядов натуральных чисел.
Ход урока
I. Устные упражнения (проводят учащиеся).
Первый ученик: № 212 (д). Написать на доске ответы к примерам: 72, 57, 45, 51, 48. Ученик, который проводит устный счет, показывает на число, а ученики ищут из этого столбца, какие числа умножаются.
Второй ученик задает вопросы классу:
Сколько килограммов в тонне? В центнере? Сколько метров в километре?
После этого выполняется № 213 (а, б, в)
№ 219 (б) выполняется с учителем (желательно составить тексты задач разных типов).
II. Работа по теме урока.
1. Повторить классы и разряды по таблице.
2. Учитель объясняет № 194.
3. Выполнение № 195 (можно в тетради записать только число).
4. № 198, 206, 207.
5. На повторение № 225 (предварительно разобрать, а затем ученики решают самостоятельно).
6. № 226 (1, 2).
III. Итог урока.
Вопросы учителя:
1) Какое число надо прибавить к натуральному, чтобы получить следующее за ним число?
2) Как называются числа при сложении?
3) Сформулируйте переместительное свойство сложения.
4) Может ли сумма быть равной одному из слагаемых? Привести примеры.
5) Что нужно знать, чтобы найти периметр треугольника?
IV. Домашнее задание: п. 6, повторить п. 1, № 232, 235 (б), 237, 240 (а, б). Знать опорный конспект.
Урок № 19 Сложение натуральных чисел. Зависимость суммы от изменения компонентов (п. 6)
Цели: закрепить полученные знания по данной теме, научить находить изменение суммы, если одно или оба слагаемых увеличить или уменьшить на некоторое число.
Оборудование: карточки для проверки домашнего задания.
Ход урока
I. Проверка домашнего задания (на листах ученики выполняют задание, аналогичное домашнему).
Вариант I
1. Разложить по разрядам число:
а) 8 009 002; б) 44444.
2. Найдите число, оканчивающееся цифрой 8, если оно меньше 548 и больше 428.
3. Выполнить действия: 17 (377 + 238).
Вариант II
1. Разложить по разрядам число:
а) 6 708 301; б) 22222.
2. Найдите число, оканчивающееся цифрой 6, если оно меньше 256 и больше 176.
3. Выполнить действия: 19 (254 + 241).
Работы сдаются.
II. Устные упражнения.
1. Сделать «прикидку» и сказать, в каком из примеров ответ: 241, 290, 336.
153 + 7 238 + 3 118 + 17
284 + 6 372 + 9
2. 3. Существует ли натуральное число, которое равно сумме всех предшествующих ему натуральных чисел? (Ответ: 3.)
III. Работа по теме урока.
1. № 200 (устно), 201 (устно).
2. К доске вызываются четыре ученика (№ 202, 196 (а, б), 197 (г), 211), они молча решают номера у доски, класс молча решает в своих тетрадях.
Затем сверяется правильность решений. Ученикам, которые у доски, учащиеся задают вопросы. Ученики оценивают свои ответы сами и ставят себе оценку. Если учитель согласен с оценкой, то она выставляется в журнал.
3. Итоговая беседа по вопросам:
Как изменяется сумма, если:
а) одно из слагаемых увеличиваем на 15?
б) одно из слагаемых увеличиваем на 10, а другое на 20?
в) одно слагаемое увеличим на 40, а другое уменьшим на 40?
г) одно слагаемое увеличим на 30, а другое уменьшаем на 50?
IV. Самостоятельная работа (листочки возвращаются, и самостоятельная работа выполняется на другой странице. Учитель проверяет обе работы и ставит одну оценку).
ДМ № 30, 31, 33, 37.
Вариант I
1) Выполнить сложение, выбирая удобный порядок действий:
а) 695 + 2305 + 57908; б) 89716 + 9688 + 312.
2) Точка Х лежит между точками А и В. Выполните чертеж и вычислите длину отрезка АВ, если АХ = 39 мм и ХВ = 17 мм.
3) Разложите по разрядам числа:
а) 32507; б) 18703205003.
4) При сложении двух четырёхзначных чисел получилось четырёхзначное число. Известно, что если сложить первую и последнюю цифры первого слагаемого, то получится 5. Какой цифрой оканчивается первое слагаемое, если второе слагаемое начинается с цифры 8?
Вариант II
1) Выполнить сложение, выбирая удобный порядок действий:
а) 302 + 58758 + 1698; б) 197 + 2414 + 47586.
2) Точка Y лежит между точками А и В. Выполните чертеж и вычислите длину отрезка АВ, если АY = 43 см и YВ = 38 см.
3) Разложите по разрядам числа:
а) 45308; б) 253605814022.
4) При сложении двух четырёхзначных чисел получилось четырёхзначное число. Первое слагаемое начинается с цифры 8, а во втором слагаемом сумма первой и последней цифр равна 7. Какова последняя цифра второго слагаемого?
V. Домашнее задание: п. 6, № 231 (а), 238, 240 (в, г), 241 (по желанию).
Урок № 20 Вычитание натуральных чисел (п. 7)
Цели: рассказать учащимся о важности вычитания, что такое вычитание, как называются числа при вычитании, научить правильно говорить и находить вычитаемое, уменьшаемое, разность.
Оборудование: плакат с названием компонентов при вычитании; плакат с новыми математическими терминами (вычитание, уменьшаемое, вычитаемое, разность).
Ход урока
I. Устные упражнения (совместно с учениками, заранее подготовленными).
1. Первый ученик: Сложите:
а) два десятка и семь десятков;
б) пять сотен и девять десятков;
в) одну тысячу, пять десятков и шесть сотен;
2. Второй ученик: Счет «цепочкой»:
30 + 20 2 : 20 + 19 =
60 + 30 : 3 + 15 : 9 =
3. Учитель: Составьте условие задачи, решением которой служит выражение: 26 + 15 – 7.
II. Изучение нового материала.
1. Предлагается решить задачу.
В двух гаражах стояло 8 машин. Сколько машин стояло в первом гараже, если во втором было 5 машин?
|