Главная страница

Программа для основного общего образования пояснительная записка



НазваниеПрограмма для основного общего образования пояснительная записка
страница2/4
Дата24.02.2016
Размер0.62 Mb.
ТипПрограмма
1   2   3   4
Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ
ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

АЛГЕБРА

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем2. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.

Арксинус, арккосинус, арктангенс числа.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.

Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ГЕОМЕТРИЯ

Уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описания­ми, изображениями;

  • описывать взаимное расположение прямых и плоско­стей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное располо­жение объектов в пространстве;

  • изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пира­миды,

  • решать планиметрические и простейшие стереометриче­ские задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практиче­ских ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей про­странственных тел при решении практических задач, используя при необходимости справочники и вычисли­тельные устройства.



СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС(алгебра и начала анализа)

  1. Тригонометрические функции

Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргу­мента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.

Основная цель — расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства триго­нометрических функций и познакомить учащихся с их графиками.

Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригоно­метрии, известные из курса алгебры, и выводятся неко­торые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учеб­ника, таблиц, справочников.

Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения си­нуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и реше­ния тригонометрических уравнений.

Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функ­ций (экстремумы, периодичность), и общая схема исследо­вания функций. В соответствии с этой общей схемой про­водится исследование функций синус, косинус, тангенс и строятся их графики.

  1. Тригонометрические уравнения

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Основная цель — сформировать умение решать про­стейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических урав­нений.

Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окруж­ности. Отдельного внимания заслуживают уравнения вида sin л = 1, cos л = 0 и т. п. Их решение нецелесообразно сво­дить к применению общих формул.

Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею ре­шения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргу­мента, с последующей заменой.

Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.

Как и в предыдущей теме, предполагается возможность использования справочных материалов.

  1. Производная

Производная. Производные суммы, произведения и част­ного. Производная степенной функции с целым показате­лем. Производные синуса и косинуса.

Основная цель — ввести понятие производной; научить находить производные функций в случаях, не тре­бующих трудоемких выкладок.

При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные пред­ставления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к пря­мой линии и т. п.

Формирование понятия предела функции, а также уме­ние воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассмат­ривается только теорема о производной суммы, все осталь­ные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.

В ходе решения задач на применение формулы произ­водной сложной функции можно ограничиться случаем f(kx + Ъ): именно этот случай необходим далее.

  1. Применение производной

Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьше­го значений.

Основная цель — ознакомить с простейшими мето­дами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.

Опора на геометрический и механический смысл произ­водной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.

Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для ис­следования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане.
11 КЛАСС

1. Первообразная и интеграл

Первообразная. Первообразные степенной функции с це­лым показателем (п * -1), синуса и косинуса. Простейшие правила нахождения первообразных.

Площадь криволинейной трапеции. Интеграл. Формула Ньютона — Лейбница. Применение интеграла к вычисле­нию площадей и объемов.

Основная цель — ознакомить с интегрированием как операцией, обратной дифференцированию; показать применение интеграла к решению геометрических задач.

Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных.

Интеграл вводится на основе рассмотрения задачи о пло­щади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений.

В качестве иллюстрации применения интеграла рассмат­риваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе гео- * метрии.

Материал, касающийся работы переменной силы и на­хождения центра масс, не является обязательным.

При изучении темы целесообразно широко применять графические иллюстрации.

2. Показательная и логарифмическая функции

Понятие о степени с иррациональным показателем. Ре­шение иррациональных уравнений.

Показательная функция, ее свойства и график. Тожде­ственные преобразования показательных уравнений, нера­венств и систем.

Логарифм числа. Основные свойства логарифмов. Лога­рифмическая функция, ее свойства и график. Решение ло­гарифмических уравнений и неравенств.

Производная показательной функции. Число е и нату­ральный логарифм. Производная степенной функции.

Основная цель — привести в систему и обобщить сведения о степенях; ознакомить с показательной, лога­рифмической и степенной функциями и их свойствами; научить решать несложные показательные, логарифмиче­ские и иррациональные уравнения, их системы.

Следует учесть, что в курсе алгебры девятилетней шко­лы вопросы, связанные со свойствами корней тг-й степени и свойствами степеней с рациональным показателем, воз­можно, не рассматривались, изучение могло быть ограниче­но действиями со степенями с целым показателем и квад­ратными корнями. В зависимости от реальной подготовки класса эта тема изучается либо в виде повторения, либо как новый материал.

Серьезное внимание следует уделить работе с основными логарифмическими и показательными тождествами, которые используются как при изложении теоретических вопро­сов, так и при решении задач.

Исследование показательной, логарифмической и сте­пенной функций проводится в соответствии с ранее введен­ной схемой. Проводится краткий обзор свойств этих функ­ций в зависимости от значений параметров.

Раскрывается роль показательной функции как матема­тической модели, которая находит широкое применение при изучении различных процессов.

Материал об обратной функции не является обязатель­ным.

3. Повторение. Решение задач.
СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 класс(геометрия)

    1. Аксиомы стереометрии и их простейшие следствия

Основные понятия стереометрии. Аксиомы стереомет­рии и их связь с аксиомами планиметрии.

Основная цель — сформировать представления уча­щихся об основных понятиях и аксиомах стереометрии.

Тема играет важную роль в развитии пространственных представлений учащихся, фактически впервые встречаю­щихся здесь с пространственной геометрией. Поэтому пре­подавание следует вести с широким привлечением моде­лей, рисунков. В ходе решения задач следует добиваться от учащихся проведения доказательных рассуждений.
Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения пере­численных ниже умений.
Параллельность прямых и плоскостей

Параллельные прямые в пространстве. Признак парал­лельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельности плоскостей. Изображение пространствен­ных фигур на плоскости и его свойства.

Основная цель — дать учащимся систематические знания о параллельности прямых и плоскостей в простран­стве.

В теме обобщаются известные из планиметрии сведения * о параллельности прямых. На примере теоремы о сущест­вовании и единственности прямой, параллельной данной, учащиеся получают представления о необходимости заново доказать известные им из планиметрии факты в тех случа­ях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости.

Задачи на доказательство решаются во многих случаях по аналогии с доказательствами теорем; включение задач на вы­числение длин отрезков позволяет целенаправленно провести повторение курса планиметрии: равенства и подобия тре­угольников; определений, свойств и признаков прямоуголь­ника, параллелограмма, ромба, квадрата, трапеции и т. д.

Свойства параллельного проектирования применяют­ся к решению простейших задач и практическому построению изображений пространственных фигур на плоско­сти.

  1. Перпендикулярность прямых и плоскостей

Перпендикулярные прямые в пространстве. Признак пер­пендикулярности прямой и плоскости. Свойства перпенди­кулярности прямой и плоскости. Перпендикуляр и наклон­ная к плоскости. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещи­вающимися прямыми. Применение ортогонального проекти­рования в техническом черчении.

Основная цель — дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве.

Материал темы обобщает и систематизирует известные учащимся из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесо­образно сочетать с систематическим повторением соответ­ствующего материала из планиметрии.

Решения практически всех задач на вычисление сводят­ся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифаго­ра или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и пер­пендикулярности плоскостей.Тема имеет важное пропедевтическое значение для изу­чения многогранников. Фактически при решении многих задач, связанных с вычислением длин перпендикуляра и наклонных к плоскости, речь идет о вычислении элементов пирамид.

  1. Декартовы координаты и векторы в пространстве

Декартовы координаты в пространстве. Расстояние меж­ду точками. Координаты середины отрезка. Преобразование симметрии в пространстве. Движение в пространстве. Парал­лельный перенос в пространстве. Подобие пространственных фигур. Угол между скрещивающимися прямыми. Угол меж­ду прямой и плоскостью. Угол между плоскостями. Площадь ортогональной проекции многоугольника. Векторы в про­странстве. Действия над векторами в пространстве. Разложе­ние вектора по трем некомпланарным векторам. Уравнение плоскости.

Основная цель — обобщить и систематизировать представления учащихся о векторах и декартовых коорди­натах; ввести понятия углов между скрещивающимися прямыми, прямой и плоскостью, двумя плоскостями.

Рассмотрение векторов и системы декартовых коорди­нат носит в основном характер повторения, так как векто­ры изучались в курсе планиметрии, а декартовы координа­ты — в курсе алгебры девятилетней школы. Новым для учащихся является пространственная система координат и трехмерный вектор.

Различные виды углов в пространстве являются, наряду с расстояниями, основными количественными характери­стиками взаимного расположения прямых и плоскостей, которые будут широко использоваться при изучении мно­гогранников и тел вращения.

Следует обратить внимание на те конфигурации, кото­рые ученик будет использовать в дальнейшем: угол между скрещивающимися ребрами многогранника, угол между ребром и гранью многогранника, угол между гранями мно­гогранника.

Основными задачами в данной теме являются задачи на вычисление, в ходе решения которых ученики проводят обоснование правильности выбранного для вычислений угла.

. Повторение. Решение задач
11 КЛАСС

СОДЕРЖАНИЕ ОБУЧЕНИЯ(геометрия)

        1. Многогранники

Двугранный и многогранный углы. Линейный угол дву­гранного угла. Многогранники. Сечения многогранников. Призма. Прямая и правильная призмы. Параллелепипед. Пирамида. Усеченная пирамида. Правильная пирамида. Правильные многогранники.

Основная цель — дать учащимся систематические сведения об основных видах многогранников.

На материале, связанном с изучением пространствен­ных геометрических фигур, повторяются и систематизиру­ются знания учащихся о взаимном расположении точек, прямых и плоскостей в пространстве, об измерении рассто­яний и углов в пространстве.

Пространственные представления учащихся развивают­ся в процессе решения большого числа задач, требующих распознавания различных видов многогранников и форм их сечений, а также построения соответствующих черте­жей.

Практическая направленность курса реализуется значи­тельным количеством вычислительных задач.

        1. Тела вращения

Тела вращения: цилиндр, конус, шар. Сечения тел вра­щения. Касательная плоскость к шару. Вписанные и опи­санные многогранники. Понятие тела и его поверхности в геометрии.

Основная цель — познакомить учащихся с простей­шими телами вращения и их свойствами.

Подавляющее большинство задач к этой теме представ­ляет собой задачи на вычисление длин, углов и площадей плоских фигур, что определяет практическую направ­ленность курса. В ходе их решения повторяются и систе­матизируются сведения, известные учащимся из курсов планиметрии и стереометрии 10 класса, — решение тре­угольников, вычисление длин окружностей, расстояний и т. д., что позволяет органично построить повторение. При решении вычислительных задач следует поддерживать достаточно высокий уровень обоснованности выводов.
1   2   3   4