|
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ АЛГЕБРА
Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем2. Свойства степени с действительным показателем.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.
Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.
Арксинус, арккосинус, арктангенс числа.
ФУНКЦИИ
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.
Обратная функция. Область определения и область значений обратной функции. График обратной функции.
Степенная функция с натуральным показателем, ее свойства и график.
Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.
Тригонометрические функции, их свойства и графики; периодичность, основной период.
Показательная функция (экспонента), ее свойства и график.
Логарифмическая функция, ее свойства и график.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.
Понятие о непрерывности функции.
Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.
УРАВНЕНИЯ И НЕРАВЕНСТВА
Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
ГЕОМЕТРИЯ
Уметь:
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды,
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 КЛАСС(алгебра и начала анализа)
Тригонометрические функции
Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.
Основная цель — расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить учащихся с их графиками.
Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учебника, таблиц, справочников.
Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения синуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и решения тригонометрических уравнений.
Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность), и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.
Тригонометрические уравнения
Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.
Основная цель — сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений.
Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sin л = 1, cos л = 0 и т. п. Их решение нецелесообразно сводить к применению общих формул.
Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.
Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.
Как и в предыдущей теме, предполагается возможность использования справочных материалов.
Производная
Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производные синуса и косинуса.
Основная цель — ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок.
При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т. п.
Формирование понятия предела функции, а также умение воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассматривается только теорема о производной суммы, все остальные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.
В ходе решения задач на применение формулы производной сложной функции можно ограничиться случаем f(kx + Ъ): именно этот случай необходим далее.
Применение производной
Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
Основная цель — ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.
Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.
Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане. 11 КЛАСС
1. Первообразная и интеграл
Первообразная. Первообразные степенной функции с целым показателем (п * -1), синуса и косинуса. Простейшие правила нахождения первообразных.
Площадь криволинейной трапеции. Интеграл. Формула Ньютона — Лейбница. Применение интеграла к вычислению площадей и объемов.
Основная цель — ознакомить с интегрированием как операцией, обратной дифференцированию; показать применение интеграла к решению геометрических задач.
Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных.
Интеграл вводится на основе рассмотрения задачи о площади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений.
В качестве иллюстрации применения интеграла рассматриваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе гео- * метрии.
Материал, касающийся работы переменной силы и нахождения центра масс, не является обязательным.
При изучении темы целесообразно широко применять графические иллюстрации.
2. Показательная и логарифмическая функции
Понятие о степени с иррациональным показателем. Решение иррациональных уравнений.
Показательная функция, ее свойства и график. Тождественные преобразования показательных уравнений, неравенств и систем.
Логарифм числа. Основные свойства логарифмов. Логарифмическая функция, ее свойства и график. Решение логарифмических уравнений и неравенств.
Производная показательной функции. Число е и натуральный логарифм. Производная степенной функции.
Основная цель — привести в систему и обобщить сведения о степенях; ознакомить с показательной, логарифмической и степенной функциями и их свойствами; научить решать несложные показательные, логарифмические и иррациональные уравнения, их системы.
Следует учесть, что в курсе алгебры девятилетней школы вопросы, связанные со свойствами корней тг-й степени и свойствами степеней с рациональным показателем, возможно, не рассматривались, изучение могло быть ограничено действиями со степенями с целым показателем и квадратными корнями. В зависимости от реальной подготовки класса эта тема изучается либо в виде повторения, либо как новый материал.
Серьезное внимание следует уделить работе с основными логарифмическими и показательными тождествами, которые используются как при изложении теоретических вопросов, так и при решении задач.
Исследование показательной, логарифмической и степенной функций проводится в соответствии с ранее введенной схемой. Проводится краткий обзор свойств этих функций в зависимости от значений параметров.
Раскрывается роль показательной функции как математической модели, которая находит широкое применение при изучении различных процессов.
Материал об обратной функции не является обязательным.
3. Повторение. Решение задач. СОДЕРЖАНИЕ ОБУЧЕНИЯ
10 класс(геометрия)
Аксиомы стереометрии и их простейшие следствия
Основные понятия стереометрии. Аксиомы стереометрии и их связь с аксиомами планиметрии.
Основная цель — сформировать представления учащихся об основных понятиях и аксиомах стереометрии.
Тема играет важную роль в развитии пространственных представлений учащихся, фактически впервые встречающихся здесь с пространственной геометрией. Поэтому преподавание следует вести с широким привлечением моделей, рисунков. В ходе решения задач следует добиваться от учащихся проведения доказательных рассуждений. Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений. Параллельность прямых и плоскостей
Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельности плоскостей. Изображение пространственных фигур на плоскости и его свойства.
Основная цель — дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.
В теме обобщаются известные из планиметрии сведения * о параллельности прямых. На примере теоремы о существовании и единственности прямой, параллельной данной, учащиеся получают представления о необходимости заново доказать известные им из планиметрии факты в тех случаях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости.
Задачи на доказательство решаются во многих случаях по аналогии с доказательствами теорем; включение задач на вычисление длин отрезков позволяет целенаправленно провести повторение курса планиметрии: равенства и подобия треугольников; определений, свойств и признаков прямоугольника, параллелограмма, ромба, квадрата, трапеции и т. д.
Свойства параллельного проектирования применяются к решению простейших задач и практическому построению изображений пространственных фигур на плоскости.
Перпендикулярность прямых и плоскостей
Перпендикулярные прямые в пространстве. Признак перпендикулярности прямой и плоскости. Свойства перпендикулярности прямой и плоскости. Перпендикуляр и наклонная к плоскости. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми. Применение ортогонального проектирования в техническом черчении.
Основная цель — дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве.
Материал темы обобщает и систематизирует известные учащимся из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.
Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.Тема имеет важное пропедевтическое значение для изучения многогранников. Фактически при решении многих задач, связанных с вычислением длин перпендикуляра и наклонных к плоскости, речь идет о вычислении элементов пирамид.
Декартовы координаты и векторы в пространстве
Декартовы координаты в пространстве. Расстояние между точками. Координаты середины отрезка. Преобразование симметрии в пространстве. Движение в пространстве. Параллельный перенос в пространстве. Подобие пространственных фигур. Угол между скрещивающимися прямыми. Угол между прямой и плоскостью. Угол между плоскостями. Площадь ортогональной проекции многоугольника. Векторы в пространстве. Действия над векторами в пространстве. Разложение вектора по трем некомпланарным векторам. Уравнение плоскости.
Основная цель — обобщить и систематизировать представления учащихся о векторах и декартовых координатах; ввести понятия углов между скрещивающимися прямыми, прямой и плоскостью, двумя плоскостями.
Рассмотрение векторов и системы декартовых координат носит в основном характер повторения, так как векторы изучались в курсе планиметрии, а декартовы координаты — в курсе алгебры девятилетней школы. Новым для учащихся является пространственная система координат и трехмерный вектор.
Различные виды углов в пространстве являются, наряду с расстояниями, основными количественными характеристиками взаимного расположения прямых и плоскостей, которые будут широко использоваться при изучении многогранников и тел вращения.
Следует обратить внимание на те конфигурации, которые ученик будет использовать в дальнейшем: угол между скрещивающимися ребрами многогранника, угол между ребром и гранью многогранника, угол между гранями многогранника.
Основными задачами в данной теме являются задачи на вычисление, в ходе решения которых ученики проводят обоснование правильности выбранного для вычислений угла.
. Повторение. Решение задач 11 КЛАСС
СОДЕРЖАНИЕ ОБУЧЕНИЯ(геометрия)
Многогранники
Двугранный и многогранный углы. Линейный угол двугранного угла. Многогранники. Сечения многогранников. Призма. Прямая и правильная призмы. Параллелепипед. Пирамида. Усеченная пирамида. Правильная пирамида. Правильные многогранники.
Основная цель — дать учащимся систематические сведения об основных видах многогранников.
На материале, связанном с изучением пространственных геометрических фигур, повторяются и систематизируются знания учащихся о взаимном расположении точек, прямых и плоскостей в пространстве, об измерении расстояний и углов в пространстве.
Пространственные представления учащихся развиваются в процессе решения большого числа задач, требующих распознавания различных видов многогранников и форм их сечений, а также построения соответствующих чертежей.
Практическая направленность курса реализуется значительным количеством вычислительных задач.
Тела вращения
Тела вращения: цилиндр, конус, шар. Сечения тел вращения. Касательная плоскость к шару. Вписанные и описанные многогранники. Понятие тела и его поверхности в геометрии.
Основная цель — познакомить учащихся с простейшими телами вращения и их свойствами.
Подавляющее большинство задач к этой теме представляет собой задачи на вычисление длин, углов и площадей плоских фигур, что определяет практическую направленность курса. В ходе их решения повторяются и систематизируются сведения, известные учащимся из курсов планиметрии и стереометрии 10 класса, — решение треугольников, вычисление длин окружностей, расстояний и т. д., что позволяет органично построить повторение. При решении вычислительных задач следует поддерживать достаточно высокий уровень обоснованности выводов.
|
|
|