Главная страница

Пояснительная записка



НазваниеПояснительная записка
страница2/5
Дата14.03.2016
Размер0.76 Mb.
ТипПояснительная записка
1   2   3   4   5

Ценностные ориентиры содержания учебного предмета

Математика является основой общечеловеческой культуры. Об этом свидетельствует ее постоянное и обязательное присутствие практически во всех сферах современного мышления, науки и техники. Поэтому приобщение учащихся к математике как к явлению общечеловеческой культуры существенно повышает ее роль в развитии личности младшего школьника.

Содержание курса математики направлено прежде всего на интеллектуальное развитие младших школьников: овладение логическими

действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям, а также реализует следующие цели обучения:

- сформировать у учащихся значимые с точки зрения общего образования арифметические и геометрические представления о числах и отношениях, алгоритмах выполнения арифметических действий, свойствах этих действий, о величинах и их измерении, о геометрических фигурах;

- владение математическим языком, знаково-символическими средствами, установление отношений между математическими объектами служит средством познания окружающего мира, процессов и явлений, происходящих в повседневной практике;

- овладение важнейшими элементами учебной деятельности в процессе реализации содержания курса на уроках математики обеспечивает формирование у учащихся «умения учиться», что оказывает заметное влияние на развитие их познавательных способностей;

- решение математических (в том числе арифметических) текстовых задач оказывает положительное влияние на эмоционально-волевое сферу личности учащихся, развивает умение преодолевать трудности, настойчивость, волю, умение испытывать удовлетворение от выполненной работы.

Кроме того, важной ценностью содержания обучения является работа с информацией, представленной таблицами, графиками, диаграммами, схемами, базами данных; формирование соответствующих умений на уроках математики оказывает существенную помощь при изучении других школьных предметов.

Личностные, метапредметные и предметные результаты освоения курса математики

Личностными результатами обучения учащихся являются:

-самостоятельность мышления; умение устанавливать с какими учебными задачами ученик может самостоятельно успешно справиться;

-готовность и способность к саморазвитию;

-сформированность мотивации к обучению;

-способность характеризовать и оценивать собственные математические ЗУН

-умение использовать математическую подготовку в учебной, практической деятельности возникающей в повседневной жизни;

-способность к самоорганизации и самоорганизованности;

-готовность высказывать собственные суждения и давать им обоснование;

-владение коммуникативными умениями.

Метапредметными результатами обучения являются:

-владение основными методами познания окружающего мира(наблюдение,сравнение,анализ,синтез,обобщение,моделирование);

-понимание и принятие учебной задачи, поиск и нахождение способов её решения;

-планирование, контроль и оценка учебных действий, определение наиболее эффективного способа достижения результата;

-создание моделей изучаемых объектов с использованием знаково-символических средств;

-адекватное оценивание результатов своей деятельности;

-использование математической речи для решения разнообразных коммуникативных задач;

-умение работать в информационной среде;

Готовность слушать и слышать собеседника, вести диалог.

Предметными результатами учащихся на выходе из начальной школы являются:


  1. К концу обучения в 1 классе ученик научится:


называть:

  • предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами;

  • натуральные числа от 1 до 20 в прямом и в обратном порядке, следующее (предыдущее) при счёте число;

  • число, большее (меньшее) данного числа (на несколько единиц);

  • геометрическую фигуру (точку, отрезок, треугольник, квадрат, пятиугольник, куб, шар);

различать:

  • число и цифру;

  • знаки арифметических действий;

  • круг и шар, квадрат и куб;

  • многоугольники по числу сторон (углов);

  • направления движения (слева направо, справа налево, сверху вниз, снизу вверх);

читать:

  • числа в пределах 20, записанные цифрами;

  • записи вида: 3 + 2 = 5, 6 – 4 = 2, 5 * 2 = 10, 9 : 3 = 3;

сравнивать:

  • предметы с целью выявления в них сходства и различий;

  • предметы по размерам (больше, меньше);

  • два числа («больше», «меньше», «больше на…», «меньше на…»);

  • данные значения длины;

  • отрезки по длине;

воспроизводить:

  • результаты табличного сложения любых однозначных чисел;

  • результаты табличного вычитания однозначных чисел;

  • способ решения задачи в вопросно-ответной форме;

распознавать:

  • геометрические фигуры;

моделировать:

  • отношения «больше», «меньше», «больше на…», «меньше на…» с использованием фишек, геометрических схем (графов) с цветными стрелками;

  • ситуации, иллюстрирующие арифметические действия (сложение, вычитание, умножение, деление);

  • ситуацию, описанную текстом арифметической задачи, с помощью фишек или схематического рисунка;

характеризовать:

  • расположение предметов на плоскости и в пространстве;

  • расположение чисел на шкале линейки (левее, правее, между);

  • результаты сравнения чисел словами «больше» или «меньше»;

  • предъявленную геометрическую фигуру (форма, размеры);

  • расположение предметов или числовых данных в таблице: верхняя (средняя, нижняя) строка, левый (правый, средний) столбец;

анализировать:

  • текст арифметической задачи: выделять условие и вопрос, данные и искомые числа (величины);

  • предложенные варианты решения задачи с целью выбора верного или оптимального решения;

классифицировать:

  • распределять элементы множеств на группы по заданному признаку;

упорядочивать:

  • предметы (по высоте, длине, ширине);

  • отрезки (в соответствии с их длинами);

  • числа (в порядке увеличения или уменьшения);

конструировать:

  • алгоритм решения задачи;

  • несложные задачи с заданной сюжетной ситуацией (по рисунку, схеме);

контролировать:

  • свою деятельность (обнаруживать и исправлять допущенные ошибки);

оценивать:

  • расстояние между точками, длину предмета или отрезка (на глаз);

  • предъявленное готовое решение учебной задачи (верно, неверно);

решать учебные или практические задачи:

  • пересчитывать предметы, выражать числами получаемые результаты;

  • записывать цифрами числа от 1 до 20, число нуль;

  • решать простые текстовые арифметические задачи (в одно действие);

  • измерять длину отрезка с помощью линейки;

  • изображать отрезок заданной длины;

  • отмечать на бумаге точку, проводить линию по линейке;

  • выполнять вычисления (в том числе вычислять значения выражений, содержащих скобки);

  • ориентироваться в таблице: выбирать необходимую для решения задачи информацию.


К концу обучения в 1 классе ученик может научиться:
сравнивать:

  • разные приёмы вычислений с целью выявления наиболее удобного приёма;

воспроизводить:

  • способ решения арифметической задачи или любой другой учебной задачи в виде связного устного рассказа;

классифицировать:

  • определять основание классификации;

обосновывать:

  • приёмы вычислений на основе использования свойств арифметических действий;

контролировать деятельность:

  • осуществлять взаимопроверку выполненного задания при работе в парах;

решать учебные и практические задачи:

  • преобразовывать текст задачи в соответствии с предложенными условиями;

  • использовать изученные свойства арифметических действий при вычислениях;

  • выделять на сложном рисунке фигуру указанной формы (отрезок, треугольник и др.), пересчитывать число таких фигур;

  • составлять фигуры из частей;

  • разбивать данную фигуру на части в соответствии с заданными требованиями;

  • изображать на бумаге треугольник с помощью линейки;

  • находить и показывать на рисунках пары симметричных относительно осей симметрии точек и других фигур (их частей);

  • определять, имеет ли данная фигура ось симметрии и число осей;

  • представлять заданную информацию в виде таблицы;

  • выбирать из математического текста необходимую информацию для ответа на поставленный вопрос.




  1. К концу обучения во 2 классе ученик научится:


называть:

  • натуральные числа от 20 до 100 в прямом и в обратном порядке, следующее (предыдущее) при счёте число;

  • число, большее или меньшее данного числа в несколько раз;

  • единицы длины, площади;

  • одну или несколько долей данного числа и числа по его доле;

  • компоненты арифметических действий (слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное);

  • геометрическую фигуру (многоугольник, угол, прямоугольник, квадрат, окружность);

сравнивать:

  • числа в пределах 100;

  • числа в кратном отношении (во сколько раз одно число больше или меньше другого);

  • длины отрезков;

различать:

  • отношения «больше в …» и «больше на …», «меньше в …» и «меньше на …»;

  • компоненты арифметических действий;

  • числовое выражение и его значение;

  • российские монеты, купюры разных достоинств;

  • прямые и непрямые углы;

  • периметр и площадь треугольника;

  • окружность и круг;

читать:

  • числа в пределах 100, записанные цифрами;

  • записи вида: 5 * 2 = 10, 12 : 4 = 3;

воспроизводить:

  • результаты табличных случаев умножения однозначных чисел и соответствующих случаев деления;

  • соотношения между единицами длины: 1 м = 100 см, 1 м = 10 дм;

приводить примеры:

  • однозначных и двузначных чисел;

  • числовых выражений;

моделировать:

  • десятичный состав двузначного числа;

  • алгоритмы сложения и вычитания двузначных чисел;

  • ситуацию, представленную в тексте арифметической задачи, в виде схемы, рисунка;

распознавать:

  • геометрические фигуры (многоугольники, окружность, прямоугольник, угол);

упорядочивать:

  • числа в пределах 100 в порядке увеличения или уменьшения;

характеризовать:

  • числовое выражение (название, как составлено);

  • многоугольник (название, число углов, сторон, вершин);

анализировать:

  • текст учебной задачи с целью поиска алгоритма её решения;

  • готовые решения задач с целью выбора верного решения, рационального способа решения;

классифицировать:

  • углы (прямые, непрямые);

  • числа в пределах 100 (однозначные, двузначные);

конструировать:

  • тексты несложных арифметических задач;

  • алгоритм решения составной арифметической задачи;

контролировать:

  • свою деятельность (находить и исправлять ошибки);

оценивать:

  • готовое решение учебной задачи (верно, неверно);

решать учебные и практические задачи:

  • записывать цифрами двузначные числа;

  • решать составные арифметические задачи в два действия в различных комбинациях;

  • вычислять сумму и разность чисел в пределах 100, используя изученные устные и письменные приёмы вычислений;

  • вычислять значения простых и составных числовых выражений;

  • вычислять периметр и площадь прямоугольника (квадрата);

  • строить окружность с помощью циркуля;

  • выбирать из таблицы необходимую информацию для решения учебной задачи;

  • заполнять таблицы, имея некоторый банк данных.


К концу обучения во 2 классе ученик может научиться:
формулировать:

  • свойства умножения и деления;

  • определения прямоугольника (квадрата);

  • свойства прямоугольника (квадрата);

называть:

  • вершины и стороны угла, обозначенные латинскими буквами;

  • элементы многоугольника (вершины, стороны, углы);

  • центр и радиус окружности;

  • координаты точек, отмеченных на числовом луче;

читать:

  • обозначения луча, угла, многоугольника;

различать:

  • луч и отрезок;

характеризовать:

  • расположение чисел на числовом луче;

  • взаимное расположение фигур на плоскости (пересекаются, не пересекаются, имеют общую точку (общие точки);

решать учебные и практические задачи:

  • выбирать единицу длины при выполнении измерений;

  • обосновывать выбор арифметических действий для решения задачи;

  • указывать на рисунке все оси симметрии прямоугольника (квадрата);

  • изображать на бумаге многоугольник с помощью линейки или от руки;

  • составлять несложные числовые выражения;

  • выполнять несложные устные вычисления в пределах 100.




  1. К концу обучения в 3 классе ученик научится:


называть:

  • любое следующее (предыдущее) при счёте число в пределах 1000, любой отрезок натурального ряда от 100 до 1000 в прямом и обратном порядке;

  • компоненты действия деления с остатком;

  • единицы массы, времени, длины;

  • геометрическую фигуру (ломаная);

сравнивать:

  • числа в пределах 1000;

  • значения величин, выраженных в одинаковых или разных единицах;

различать:

  • знаки > и <;

  • числовые равенства и неравенства;

читать:

  • записи вида: 120 < 365, 900 > 850;

воспроизводить:

  • соотношения между единицами массы, длины, времени;

  • устные и письменные алгоритмы арифметических действий в пределах 1000;

приводить примеры:

  • числовых равенств и неравенств;

моделировать:

упорядочивать:

  • натуральные числа в пределах 1000;

  • значения величин, выраженных в одинаковых или разных единицах;

анализировать:

  • структуру числового выражения;

  • текст арифметической (в том числе логической) задачи;

классифицировать:

  • числа в пределах 1000 (однозначные, двузначные, трёхзначные);

конструировать:

  • план решения составной арифметической (в том числе логической) задачи;

контролировать:

  • свою деятельность (проверять правильность письменных вычислений с натуральными числами в пределах 1000), находить и исправлять ошибки;

решать учебные и практические задачи:

  • читать и записывать цифрами любое трёхзначное число;

  • читать и составлять несложные числовые выражения;

  • выполнять несложные устные вычисления в пределах 1000;

  • вычислять сумму и разность числа в пределах 1000, выполнять умножение и деление на однозначное и на двузначное число, используя письменные алгоритмы вычислений;

  • выполнять деление с остатком;

  • определять время по часам;

  • изображать ломаные линии разных видов;

  • вычислять значения числовых выражений, содержащих 2-3 действия (со скобками и без скобок);

  • решать текстовые арифметические задачи в три действия.


К концу обучения в 3 классе ученик может научиться:
формулировать:

  • сочетательное свойство умножения;

  • распределительное свойство умножения относительно сложения (вычитания);

читать:

  • обозначения прямой, ломаной;

приводить примеры:

  • высказываний и предложений, не являющихся высказываниями;

  • верных и неверных высказываний;

различать:

  • числовое и буквенное выражения;

  • прямую и луч, прямую и отрезок;

  • замкнутую и незамкнутую ломаную линии;

характеризовать:

  • ломаную линию (вид, число вершин, звеньев);

  • взаимное расположение лучей, отрезков, прямых на плоскости;

конструировать:

  • буквенное выражение, в том числе для решения задач с буквенными данными;

воспроизводить:

  • способы деления окружности на 2, 4, 6 и 8 равных частей;

решать учебные и практические задачи:

  • вычислять значения буквенных выражений при заданных числовых значениях входящих в них букв;

  • изображать прямую и ломаную линии с помощью линейки;

  • проводить прямую через одну и две точки;

  • строить на бумаге в клетку точку, отрезок, луч, прямую, ломаную, симметричные данным фигурам (точке, отрезку, лучу, прямой, ломаной).




  1. К концу обучения в 4 классе ученик научится:


называть:

  • любое следующее (предыдущее) при счёте многозначное число, любой отрезок натурального ряда чисел в прямом и в обратном порядке;

  • классы и разряды многозначного числа;

  • единицы величин: длины, массы, скорости, времени;

  • пространственную фигуру, изображённую на чертеже или представленную в виде модели (многогранник, прямоугольный параллепипед (куб), пирамида, конус, цилиндр);

сравнивать:

  • многозначные числа;

  • значения величин, выраженных в одинаковых единицах;

различать:

  • цилиндр и конус, прямоугольный параллепипед и пирамиду;

читать:

  • любое многозначное число;

  • значения величин;

  • информацию, представленную в таблицах, на диаграммах;

воспроизводить:

  • устные приёмы сложения, вычитания, умножения, деления в случаях, сводимых к действиям в пределах сотни;

  • письменные алгоритмы выполнения арифметических действий с многозначными числами;

  • способы вычисления неизвестных компонентов арифметических действий (слагаемого, множителя, уменьшаемого, вычитаемого, делимого, делителя);

  • способы построения отрезка, прямоугольника, равных данным, с помощью циркуля и линейки;

моделировать:

  • разные виды совместного движения двух тел при решении задач на движение в одном направлении, в противоположных направлениях;

упорядочивать:

  • многозначные числа, располагая их в порядке увеличения (уменьшения);

  • значения величин, выраженных в одинаковых единицах;

анализировать:

  • структуру составного числового выражения;

  • характер движения, представленного в тексте арифметической задачи;

конструировать:

  • алгоритм решения составной арифметической задачи;

  • составные высказывания с помощью логических слов-связок «и», «или», «если…, то…», «неверно, что…»;

контролировать:

  • свою деятельность: проверять правильность вычислений с многозначными числами, используя изученные приёмы;

решать учебные и практические задачи:

  • записывать цифрами любое многозначное число в пределах класса миллионов;

  • вычислять значения числовых выражений, содержащих не более шести арифметических действий;

  • решать арифметические задачи, связанные с движением (в том числе задачи на совместное движение двух тел);

  • формулировать свойства арифметических действий и применять их при вычислениях;

  • вычислять неизвестные компоненты арифметических действий.


К концу обучения в 4 классе ученик может научиться:
называть:

  • координаты точек, отмеченных в координатном углу;

сравнивать:

  • величины, выраженные в разных единицах;

различать:

  • числовое и буквенное равенства;

  • виды углов и виды треугольников;

  • понятия «несколько решений» и «несколько способов решения» (задачи);

воспроизводить:

  • способы деления отрезка на равные части с помощью циркуля и линейки;

приводить примеры:

  • истинных и ложных высказываний;

оценивать:

  • точность измерений;

исследовать:

  • задачу (наличие или отсутствие решения, наличие нескольких решений);

читать:

  • информацию, представленную на графике;

решать учебные и практические задачи:

  • вычислять периметр и площадь нестандартной прямоугольной фигуры;

  • исследовать предметы окружающего мира, сопоставлять их с моделями пространственных геометрических фигур;

  • прогнозировать результаты вычислений;

  • читать и записывать любое многозначное число в пределах класса миллиардов;

  • измерять длину, массу, площадь с указанной точностью;

сравнивать углы способом наложения, используя модели.
Содержание программы

1 класс

Раздел программы

Программное содержание

Множества предметов. Отношения между предметами и между множествами предметов.

Сходство и различия предметов. Предметы, обладающие или не обладающие указанным свойством. Соотношение размеров предметов (фигур). Понятия: больше, меньше, одинаковые по размерам; длиннее, короче, такой же длины (ширины, высоты). Соотношения множеств предметов по их численностям. Понятия: больше, меньше, столько же, поровну (предметов); больше, меньше (на несколько предметов). Графы отношений «больше», «меньше» на множестве целых неотрицательных чисел.


Число и счёт.

Натуральные числа. Нуль

Названия и последовательность натуральных чисел от 1 до 20. Число предметов в множестве. Пересчитывание предметов. Число и цифра. Запись результатов пересчёта предметов цифрами.Число и цифра 0 (нуль).Расположение чисел от 0 до 20 на шкале линейки.

Сравнение чисел. Понятия: больше, меньше, равно; больше, меньше (на несколько единиц)

Арифметические действия

и их свойства.

Смысл сложения, вычитания, умножения и деления.

Практические способы выполнения действий.

Запись результатов с использованием знаков =, +, –, •, :. Названия результатов сложения (сумма) и вычитания (разность)

Число и счёт.

Сложение и вычитание (умножение и деление) как взаимно обратные действия Приёмы сложения и вычитания в случаях вида 10 + 8, 18 – 8, 13 – 10.Таблица сложения однозначных чисел в пределах 20; соответствующие случаи вычитания.

Приёмы вычисления суммы и разности: с помощью шкалы линейки; прибавление и вычитание числа по частям, вычитание с помощью таблицы сложения.

Правило сравнения чисел с помощью вычитания.

Увеличение и уменьшение числа на несколько единиц. Свойства сложения и вычитания

Сложение и вычитание с нулём. Свойство сложения: складывать два числа можно в любом порядке.

Свойства вычитания: из меньшего числа нельзя вычесть большее; разность двух одинаковых чисел равна нулю.

Порядок выполнения действий в составных выражениях со скобками.

Величины.

Цена, количество, стоимость товара

Рубль. Монеты достоинством 1 р., 2 р., 5 р., 10 р.

Зависимость между величинами, характеризующими процесс купли-продажи. Вычисление стоимости по двум другим известным величинам (цене и количеству товара). Геометрические величины

Длина и её единицы: сантиметр и дециметр. Обозначения: см, дм. Соотношение:

1 дм = 10 см.

Длина отрезка и её измерение с помощью линейки в сантиметрах, в дециметрах, в дециметрах и сантиметрах. Выражение длины в указанных единицах; записи вида

1 дм 6 см = 16 см,

12 см = 1 дм 2 см.

Расстояние между двумя точками.

Работа с текстовыми задачами.

Текстовая арифметическая задача и её решение

Понятие арифметической задачи. Условие и вопрос задачи. Задачи, требующие однократного применения арифметического действия (простые задачи). Запись решения и ответа. Составная задача и её решение.

Задачи, содержащие более двух данных и несколько вопросов. Изменение условия или вопроса задачи.

Составление текстов задач в соответствии с заданными условиями

Пространственные отношения.

Геометрические фигуры.

Взаимное расположение предметов

Понятия: выше, ниже, дальше, ближе, справа, слева, над, под, за, между, вне, внутри. Осевая симметрия

Отображение предметов в зеркале. Ось симметрии. Пары симметричных фигур (точек, отрезков, многоугольников). Примеры фигур, имеющих одну или несколько осей симметрии.

Логико-математическая подготовка.

Логические понятия

Понятия: все не все; все, кроме; каждый, какой-нибудь, один из любой.

Классификация множества предметов по заданному признаку. Решение несложных задач логического характера.

Работа с информацией.

Представление и сбор информации

Таблица. Строки и столбцы таблицы. Чтение несложной таблицы.

Заполнение строк и столбцов готовых таблиц в соответствии с предъявленным набором данных.

Перевод информации из текстовой формы в табличную.

Информация, связанная со счётом и измерением.

Информация, представленная последовательностями предметов, чисел, фигур.
1   2   3   4   5