Главная страница

Рабочая программа основного общего образования по геометрии в 7-9 классах на 2013 2014 учебный год учитель: баскакова



Скачать 466.05 Kb.
НазваниеРабочая программа основного общего образования по геометрии в 7-9 классах на 2013 2014 учебный год учитель: баскакова
страница2/3
Дата13.02.2016
Размер466.05 Kb.
ТипРабочая программа
1   2   3

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения математики ученик должен

знать/понимать1

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;


Геометрия

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

В рабочей программе предусмотрены контрольных работ:
● в 7 классе:

Контрольная работа №1 “Начальные геометрические сведения”

Контрольная работа №2 “Треугольники ”

Контрольная работа №3 “Параллельные прямые ”

Контрольная работа №4“ Сумма углов треугольника ”

Контрольная работа №5“ Соотношения между сторонами и углами треугольника ”

Итоговая контрольная работа

  • в 8 классе:

Контрольная работа №1 “Четырехугольники”

Контрольная работа № 2“Площадь”

Контрольная работа № 3 “Признаки подобия треугольников”

Контрольная работа №4 “Подобие треугольников”

Контрольная работа №5 “Окружность”

Итоговая контрольная работа.


  • в 9 классе:

Контрольная работа № 1 “Векторы. Метод координат”

Контрольная работа №2 “Соотношения в треугольнике, скалярное произведение векторов”

Контрольная работа №3 “Длина окружности и площадь круга”

Контрольная работа № 4 “Движение”

Итоговая контрольная работа.
НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ

Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всего курса математики в целом.

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовыми заданиями.

При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей:

Процент выполнения задания

Отметка

85-100 % %

отлично

65-84 %%

хорошо

50-64%%

удовлетворительно

0-49 %%

неудовлетворительно


При выполнении практической работы и контрольной работы:

Содержание и объем материала, подлежащего проверке в контрольной работе, определяется программой. При проверке усвоения материала выявляется полнота, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.

Отметка зависит также от наличия и характера погрешностей, допущенных учащимися.

  • грубая ошибка – полностью искажено смысловое значение понятия, определения;

  • погрешность отражает неточные формулировки, свидетельствующие о нечетком представлении рассматриваемого объекта;

  • недочет – неправильное представление об объекте, не влияющего кардинально на знания определенные программой обучения;

  • мелкие погрешности – неточности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т.п.

Эталоном, относительно которого оцениваются знания учащихся, является обязательный минимум содержания математики. Требовать от учащихся определения, которые не входят в школьный курс математики – это, значит, навлекать на себя проблемы связанные нарушением прав учащегося («Закон об образовании»).

Исходя из норм (пятибалльной системы), заложенных во всех предметных областях выставляете отметка:

  • «5» ставится при выполнении всех заданий полностью или при наличии 1-2 мелких погрешностей;

  • «4» ставится при наличии 1-2 недочетов или одной ошибки:

  • «3» ставится при выполнении 2/3 от объема предложенных заданий;

  • «2» ставится, если допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями поданной теме в полной мере (незнание основного программного материала):

  • «1» – отказ от выполнения учебных обязанностей.

Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой;

- изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию математики как учебной дисциплины;

- правильно выполнил рисунки, схемы, сопутствующие ответу;

- показал умение иллюстрировать теоретические положения конкретными примерами;

- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

- отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4,. если ответ удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя:

- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала определенные настоящей программой;

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание или неполное понимание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании специальной терминологии, в рисунках, схемах, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Раздел II. Учебно-тематический план.
9 класс

2 ч в неделю, всего 68 ч

Название темы

Кол-во

часов

Контрольные работы



урока

четверть

план

факт

план

факт

1. Векторы


8

8

1

1

1-8

1

2.Метод координат

10


10

1

1

9-18

1

3.Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

11


11

1

1

19-29

2-3

4.Длина окружности и площадь круга


12


12

1

1

30-41

3

5. Движение

8

8

1

1

42-49

4

6.Начальные сведения из стереометрии

8

8







50-57

4

7. Об аксиомах планиметрии

2

2







58-59

4

5. Повторение. Решение задач

9


9

1

1

60-68

4


Раздел Ш. Содержание тем учебного материала
1. Начальные геометрические сведения (7ч)
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Основная цель — систематизировать знания учащихся
о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений. учащихся путем обобщения очевидных или известных из курса математики 1- 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые Исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Контрольная работа №1 “Начальные геометрические сведения”

2. Треугольники (14ч)
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью наученных признаков; ввести новый класс задач - на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Контрольная работа №2 “Треугольники ”
3. Параллельные прямые (9ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Контрольная работа №3 “Параллельные прямые ”

4. Соотношения между сторонами и углами треугольника (16ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Основная цель — рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Контрольная работа №4“ Сумма углов треугольника ”

Контрольная работа №5“ Соотношения между сторонами и углами треугольника ”
5. Повторение. Решение задач (4ч)

Итоговая контрольная работа

8 класс

2ч в неделю, всего 68ч.

1. Четырехугольники

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Основная цель - изучить наиболее важные виды четы­рехугольников - параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства тре­угольников, поэтому полезно их повторить в начале изучения темы. Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Диагностическая контрольная работа

Контрольная работа №1 “Четырехугольники”

2. Площадь

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Основная цель - расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии - теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных Свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для уча­щихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.

Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Контрольная работа № 2“Площадь”

3. Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Основная цель - ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их примене­ния; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных от­резках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии - си­нус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Контрольная работа № 3 “Признаки подобия треугольников”

Контрольная работа №4 “Подобие треугольников”

4. Окружность

Взаимное расположение прямой и окружности. Касательнаяк окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель - расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, свя­занные с окружностью; познакомить учащихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматрива­ется много утверждений, связанных с окружностью. Для их усво­ения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах бис­сектрисы угла и серединного перпендикуляра к отрезку. Теорема

о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения сере­динных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторонописанного четырехугольника и свойство углов вписанного че­тырехугольника.

Контрольная работа №5 “Окружность”

5. Повторение. Решение задач

Итоговая контрольная работа.

9 класс

2ч в неделю, всего 68ч.

1. Векторы. Метод координат

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Контрольная работа № 1 “Векторы. Метод координат”

2. Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель - развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 00 до 1800 вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ка (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

. Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

Контрольная работа №2 “Соотношения в треугольнике, скалярное произведение векторов”

3. Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель - расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоуголь­ника, и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2п-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильно го многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь - к площа­ди круга, ограниченного окружностью.

Контрольная работа №3 “Длина окружности и площадь круга”

4. Движения

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Основная цель - познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.

Контрольная работа № 4 “Движение”

5. Об аксиомах геометрии

Беседа об аксиомах геометрии.

Основная цель - дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

6. Начальные сведения из стереометрии

Предмет стереометрии. Геометрические тела и поверхности.

Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: ци­линдр, конус, сфера, шар, формулы для вычисления их площа­дей поверхностей и объемов.

Основная цель - дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел.

Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Фор­мулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы при водится без обоснования.

7. Повторение. Решение задач

Итоговая контрольная работа.

Календарно-тематическое планирование уроков

9 класс


ур.

п/п

Содержание учебного материала

Кол

урок.

Дата

Примечание

Векторы (8 часов)

Цель: сформировать понятие вектора как направленного отрезка, показать учащимся применение вектора к решению простейших задач

1




Понятие вектора

Откладывание вектора от одной точки

1

1







2










3




Сложение векторов

Вычитание векторов

1

1







4










5




Умножение вектора на число

1







6




Умножение вектора на число

1







7




Применение векторов к решению задач

1







8




Применение векторов к решению задач

1







Метод координат (10 часов)

Цель: научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

9




Разложение вектора по двум неколлинеарным векторам

1







10




Координаты вектора

1







11

12




Средняя линия треугольника

Простейшие задачи в координатах

1

1







13




Решение задач методом координат

1







14




Уравнение окружности

1







15




Уравнение прямой

1







16




Решение задач по теме «Уравнение окружности и прямой».

1







17




Урок подготовки к контрольной работе

1







18




Контрольная работа №1 по теме «Векторы. Метод координат»

1







Соотношения между сторонами и углами треугольника (11 часов)

Цель: развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

19

20




Синус, косинус и тангенс угла

Решение задач по теме «Синус, косинус и тангенс угла»

1

1







21




Теорема о площади треугольника

1







22




Теорема синусов

1







23

24




Теорема косинусов

Решение треугольников

1

1







25




Измерительные работы

1







26




Обобщ.урок по теме «Соотношения между сторонами и углами треугольника»

1







27




Скалярное произведение векторов

1







28




Скалярное произведение в координатах

1







29




Контрольная работа №2 по теме «Соотношения в треугольнике, скалярное произведение векторов»

1







Длина окружности и площадь круга (12 часов)

Цель: расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

30




Правильный многоугольник

1







31




Окружность, описанная около правильного многоугольника и вписанная в правильный многоугольник

1







32




Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

1







33




Решение задач по теме «Правильный многоугольник»

1







34

35




Длина окружности

Решение задач по теме «Длина окружности»

1

1







36

37




Площадь круга

Площадь кругового сектора

1

1







38




Обобщение по теме «Длина окружности и площадь круга»

1







39




Решение задач по теме «Длина окружности и площадь круга»

1







40




Подготовка к контрольной работе

1







41




Контрольная работа №3 по теме «Длина окружности и площадь круга»

1







Движения (8часов)

Цель: познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

42




Понятие движения

1







43




Свойства движений

1







44




Решение задач по теме «Понятие движения , осевая и центральная симметрия»

1







45




Параллельный перенос

1







46




Поворот

1







47




Решение задач по теме «Параллельный перенос. Поворот»

1







48




Решение задач по теме «Движения»

1







49




Контрольная работа №4 по теме «Движения»

1







Начальные сведения из стереометрии (8 часов)

Цель: дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел.

50

51

52

53




Многогранники

Призма

Параллелепипед

Пирамида

1

1

1

1







54

55

56

57




Тела и поверхности вращения

Цилиндр

Конус

Сфера, шар


1

1

1

1







Об аксиомах и планиметрии (2часа)

Цель: дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

58

59




Аксиомы планиметрии

Применение аксиом к решению задач










Повторение. Решение задач (9 часов)

60




Начальные геометрические сведения. Параллельные прямые.

1







61




Треугольники

1







62




Окружность

1







63




Четырехугольники. Многоугольники.

1







64




Векторы. Метод координат. Движения.

1







65




Итоговая контрольная работа.

1







66-68




Повторение.

3







1   2   3