Главная страница

Протокол № от 2013 г. «Согласовано» Заместитель директора по увр мбоу «сош №2»



Скачать 246.09 Kb.
НазваниеПротокол № от 2013 г. «Согласовано» Заместитель директора по увр мбоу «сош №2»
Дата02.03.2016
Размер246.09 Kb.
ТипПротокол



«Согласовано»

Руководитель МО

_______/Ботова Т.В./

Протокол № __ от

«__»_________ 2013 г.

«Согласовано»

Заместитель

директора по УВР

МБОУ «СОШ № 2»

________/Янова Е.А./

«__»_________ 2013 г.

«Утверждаю»

Директор

МБОУ «СОШ № 2»

_______/Басков А.А./

Приказ №______ от

«__»_________ 2013 г.



Рабочая программа

учебного предмета

МБОУ «СОШ№2»г. Мензелинска РТ

Мясникова Разина Ханифовна, учитель

по математике, 8 А класс





Рассмотрено на заседании

педагогического совета

протокол № ____от

«___» ___________2013г.



2012-2013 учебный год

Пояснительная записка

Рабочая программа по математике в 8 классе составлена в соответствии с требованиями федерального компонента государственного стандарта на основе авторских программ:

Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Т.А.Бурмистрова. М: Просвещение,2008.

Программы общеобразовательных учреждений. Геометрия. 7-9 классы. Составитель: Т.А.Бурмистрова. М: Просвещение,2008.

Рабочая программа ориентирована на учащихся 8-а класса. Учитель в данном классе работает второй год. Класс по уровню обученности средний: есть учащиеся со слабым уровнем: Джумаева Р., Маринин С., Федоров , есть учащиеся , интересующиеся математикой: Лебедева А., Архипова Л. . Поэтому программа предусматривает дифференцированный подход в обучении.

Изучение математики направлено на реализацию целей и задач, формирование общеучебных умений, навыков и способов деятельности, достижения результатов обучения сформулированных в Государственном стандарте общего образования и примерной программе основного общего образования по математике. Преподавание ведется по учебникам: Алгебра 8 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова. М.:Просвещение, 2010.

Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов. М.: Просвещение, 2009.
Цели изучения учебного предмета

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

  • Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • Развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

  • Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении:

  • Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

  • Домашнее задание в рабочей программе запланировано примерно и может быть изменено с учетом особенностей урока.

  • Изучение математики направлено на реализацию целей и задач, формирование обще учебных умений, навыков и способов деятельности, достижения результатов обучения сформулированных в Государственном стандарте общего образования и примерной программе основного общего образования по математике.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Основные развивающие и воспитательные цели

Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Математической речи;

  • Сенсорной сферы; двигательной моторики;

  • Внимания; памяти;

  • Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • Волевых качеств;

  • Коммуникабельности;

  • Ответственности.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс. Программой отводится на изучение математики по 5 уроков в неделю, что составляет 175 часов в учебный год .

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Количество часов по темам изменено в связи со сложностью тем.

Домашнее задание в рабочей программе запланировано примерно и может быть изменено с учетом особенностей урока.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Распределение учебных часов по разделам программы



Разделы по программе

Количество часов

Контрольные работы

1

Повторение

2




2

Рациональные дроби

23

2

3

Четырехугольники

14

1

4

Квадратные корни

19

1

5

Площадь

14+3

2

6

Квадратные уравнения

21

2

7

Подо Подобные треугольники

19

2

8

Неравенства

20

2

9

Окружность

17

1

10

Степень с целым показателем. Элементы статистики

11

1

11

Повторение. Решение задач

12

1



Итого

175

15

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Алгебра 8 класс

1. Рациональные дроби (23ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей.

Преобразование рациональных выражений. Функция и её график.

Цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Знать основное свойство дроби, рациональные, целые, дробные выражения; правильно употреблять термины «выражение», «тождественное преобразование», понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь. Знать и понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь, свойства обратной пропорциональности.

Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия сложения и вычитания с алгебраическими дробями, сокращать дробь, выполнять разложение многочлена на множители применением формул сокращенного умножения, выполнять преобразование рациональных выражений. Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия умножения и деления с алгебраическими дробями, возводить дробь в степень, выполнять преобразование рациональных выражений; правильно употреблять функциональную терминологию (значение функции, аргумент, график функции), строить график обратной пропорциональности, находить значения функции y=k/x по графику, по формуле.

2.Четырехугольники (14 ч)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

3. Квадратные корни (19 ч)

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень, приближённое значение квадратного корня. Свойства квадратных корней. преобразования выражений, содержащих квадратные корни. Функция и её график.

Цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни.

Знать определения квадратного корня, арифметического квадратного корня, какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел; свойства арифметического квадратного корня.

Уметь выполнять преобразование числовых выражений, содержащих квадратные корни; решать уравнения вида x2=а; находить приближенные значения квадратного корня; находить квадратный корень из произведения, дроби, степени, строить график функции и находить значения этой функции по графику или по формуле; выносить множитель из-под знака корня, вносить множитель под знак корня; выполнять преобразование выражений, содержащих квадратные корни.

4. Площадь (14 ч + 3ч)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

5. Квадратные уравнения (21 ч)

Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

Цель – выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять из к решению задач.

Знать, что такое квадратное уравнение, неполное квадратное уравнение, приведенное квадратное уравнение; формулы дискриминанта и корней квадратного уравнения, терему Виета и обратную ей.

Уметь решать квадратные уравнения выделением квадрата двучлена, решать квадратные уравнения по формуле, решать неполные квадратные уравнения, решать квадратные уравнения с помощью теоремы, обратной теореме Виета, использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения; решать текстовые задачи с помощью квадратных уравнений.

Знать какие уравнения называются дробно-рациональными, какие бывают способы решения уравнений, понимать, что уравнение – это математический аппарат решения разнообразных задач математики, смежных областей знаний, практики.

Уметь решать дробно-рациональные уравнения, решать уравнения графическим способом, решать текстовые задачи с помощью дробно-рациональных уравнений.

6. Подобные треугольники (19 ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

7. Неравенства ( 20ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств неравенств к оценке значения выражения. Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.

Цель – выработать умения решать линейные неравенства с одной переменной и их системы.

Знать определение числового неравенства с одной переменной, что называется решением неравенства с одной переменной, что значит решить неравенство, свойства числовых неравенств, понимать формулировку задачи «решить неравенство».

Уметь записывать и читать числовые промежутки, изображать их на числовой прямой, решать линейные неравенства с одной переменной, решать системы неравенств с одной переменной.

Уметь применять свойства неравенства при решении неравенств и их систем.

8. Окружность (17 ч)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

9. Степень с целым показателем (7 ч)

Степень с целым показателем и её свойства. Стандартный вид числа. Запись приближенных значений. Действия над приближенными значениями.

Цель – сформировать умение выполнять действия над степенями с целыми показателями, ввести понятие стандартного вида числа.

Знать определение степени с целым и целым отрицательным показателем; свойства степени с целым показателями.

Уметь выполнять действия со степенями с натуральным и целым показателями; записывать числа в стандартном виде, записывать приближенные значения чисел, выполнять действия над приближенными значениями.

Элементы статистики и теории вероятностей (4 ч)

Сбор и группировка статистических данных. Наглядное представление статистической информации

10. Повторение. Решение задач  (12 ч)

Требования к уровню подготовки учащихся 8 класса:

должны знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;

  • знать определения рассматриваемых четырехугольников; формулировки и доказательства теорем, выражающих признаки и свойства этих четырехугольников; определения симметричных точек и фигур относительно прямой и точки;

  • знать основные свойства площади, формулы площади прямоугольника, параллелограмма, треугольника, трапеции; формулировки теоремы Пифагора и обратной к ней теоремы;

  • знать определения пропорциональных отрезков, подобных треугольников, формулировки и доказательства теорем, выражающих признаки и свойства подобных треугольников; определения синуса, косинуса, тангенса острого угла прямоугольного треугольника;

  • знать случаи расположения прямой и окружности; определение, свойство и признак касательной; определения центрального, вписанного углов, теорему о вписанном угле и следствия из нее; какая окружность называется вписанной, описанной, теоремы о свойствах окружностей.

должны уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;




  • распознавать на рисунке и по определению четырехугольники; применять признаки в решении задач; строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией

  • воспроизводить доказательства признаков подобия треугольников, доказывать основное тригонометрическое тождество, применять их в решении задач.

  • доказывать изученные свойства и применять их в решении задач.

  • владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.

  • решать следующие жизненно практические задачи:

- самостоятельно приобретать и применять знания в различных ситуациях, работать в группах;

- аргументировать и отстаивать свою точку зрения;

- уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов;

- пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

- самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.

Основными формами контроля для учащихся 8 класса остаются:

  • Устный опрос, который дает возможность обучающимся достичь умения ясно, точно, грамотно излагать свои мысли в устной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры.

  • Письменные формы контроля: контрольные работы, самостоятельные работы, математические диктанты, тестирование. Они позволяют проверить и проследить уровень знаний по важнейшим темам курса, развивают креативность мышления, инициативу, находчивость, активность при решении математических задач.

  • Тестирование дает возможность учащимся более уверенно подготовиться к ГИА.


Критерии и нормы оценки знаний, умений и навыков по математике.

Учитель, опираясь на эти рекомендации, оценивает знания и умения учащихся с учетом их индивидуальных особенностей.

  1. Содержание и объем материала, подлежащего проверке, определяется программой по математике для средней школы. При проверке усвоения этого материала следует выявлять полноту, прочность усвоения учащимися теории применять ее на практике в знакомых и незнакомых ситуациях.

  2. Основными формами проверки знаний и умений учащихся по математике в средней школе письменная контрольная работа и устный опрос.

При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения (их полноту, глубину, прочность, использование в различных ситуациях). Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

  1. Среди погрешностей выделяются ошибки и недочеты:

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний, умений или об отсутствии знаний, не считающихся в соответствии с программой основными. Недочетами также являются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах – как недочет.

  1. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ не теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а устное изложение и письменная запись ответа математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

  1. Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т.е. за ответ выставляется одна из отметок: 5 («отлично»), 4 («хорошо»), 3 («удовлетворительно»), 2 («неудовлетворительно»), 1 («плохо»).


1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:

- работа выполнена полностью;

- в логических рассуждениях и обосновании решения нет пробелов и ошибок;

- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

- допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

- работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

- отвечал самостоятельно, без наводящих вопросов учителя;

- возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

- незнание определения основных понятий, законов, правил, основных положений теории,

- незнание формул, общепринятых символов обозначений величин, единиц их измерения;

- незнание наименований единиц измерения;

- неумение выделить в ответе главное;

- неумение применять знания, алгоритмы для решения задач;

- неумение делать выводы и обобщения;

- неумение читать и строить графики;

- неумение пользоваться первоисточниками, учебником и справочниками;

- потеря корня или сохранение постороннего корня;

- отбрасывание без объяснений одного из них;

- равнозначные им ошибки;

- вычислительные ошибки, если они не являются опиской;

- логические ошибки.

К негрубым ошибкам следует отнести:

- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

- неточность графика;

- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

- нерациональные методы работы со справочной и другой литературой;

- неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

- нерациональные приемы вычислений и преобразований;

- небрежное выполнение записей, чертежей, схем, графиков.

Педагогические технологии, применяемые в курсе:

  1. По уровню применения - общепедагогические технологии

  2. По концепции усвоения – традиционное обучение

  3. По организационным формам – классно-урочное, дифференцированное обучение

  4. По подходу к ребенку – личностно-ориентированные технологии

  5. По преобладающему методу – обьяснительно-иллюстративный метод, технология разноуровневого обучения

  6. По категории обучающихся – работа с трудными, средними и одаренными учащимися

Средства обучения:

Технические средства:

  1. Компьютерные и мультимедийные средства

  2. Магнитофон

Дидактические средства:

  1. Книги для чтения по математике

  2. Графические средства (таблицы, плакаты по математике)

  3. Учебные телепередачи

  4. Обучающие программы

  5. Учебники:

Алгебра 8 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова. М.:Просвещение, 2011.

Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов. М.: Просвещение, 2009.

Литература для учителя:

1.«Дидактические материалы по алгебре для 8 класса» авт. Макарычев Ю.Н., Миндюк Н.Г., Просвещение, 2009

2.«Разноуровневые дидактические материалы по алгебре».8 класс. авт. Миндюк М.Б., Миндюк Н.Г.2009

3.Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2005.

4. «Самостоятельные и контрольные работы по математике для 8 класса» М.: Пр., 2005

5.«Тесты. Алгебра. 7-9 классы» Алтыпов П.И. М.: Дрофа, 2010

6. «Тесты. Геометрия. 7-9 классы» Алтыпов П.И. М.: Дрофа, 2010

7. «Математика» приложение к газете «Первое сентября» -№14,2006

8.« Математика.8 класс. Поурочные планы» Ковалева Г.И, Волгоград, «Учитель», 2007

9. сайт www.fipi.ru

Литература для учащихся:

1.«Дидактические материалы по алгебре для 8 класса» авт. Макарычев Ю.Н., Миндюк Н.Г., Просвещение, 2009

2.«Разноуровневые дидактические материалы по алгебре».8 класс. авт. Миндюк М.Б., Миндюк Н.Г.2009

3.Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2005.

4.сайт www.fipi.ru

Учебно – тематическое планирование

по математике

Класс: 8-а

Учитель: Мясникова Разина Ханифовна

Количество часов : Всего 175 часов; в неделю 5 часов.

Плановых контрольных уроков 15, зачетов 5.

Административных контрольных уроков 2 часа.

Планирование составлено на основе:

Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Т.А.Бурмистрова. М: Просвещение,2008.

Программы общеобразовательных учреждений. Геометрия. 7-9 классы. Составитель: Т.А.Бурмистрова. М: Просвещение,2008.

Учебники:

Алгебра 8 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова. М.:Просвещение, 2011.

Геометрия, 7 – 9: Учеб. для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2009.

Литература для учителя:

1.«Дидактические материалы по алгебре для 8 класса» авт. Макарычев Ю.Н., Миндюк Н.Г., Просвещение, 2009

2.«Разноуровневые дидактические материалы по алгебре».8 класс. авт. Миндюк М.Б., Миндюк Н.Г.2009

3.Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2005.

4. «Самостоятельные и контрольные работы по математике для 8 класса» М.: Пр., 2005

5.«Тесты. Алгебра. 7-9 классы» Алтыпов П.И. М.: Дрофа, 2010

6. «Тесты. Геометрия. 7-9 классы» Алтыпов П.И. М.: Дрофа, 2010

7. «Математика» приложение к газете «Первое сентября» -№14,2006

8.« Математика.8 класс. Поурочные планы» Ковалева Г.И, Волгоград, «Учитель», 2007

9. сайт www.fipi.ru

Литература для учащихся:

1.«Дидактические материалы по алгебре для 8 класса» авт. Макарычев Ю.Н., Миндюк Н.Г., Просвещение, 2009

2.«Разноуровневые дидактические материалы по алгебре».8 класс. авт. Миндюк М.Б., Миндюк Н.Г.2009

3.Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2005.

4.сайт www.fipi.ru