|
Протокол № от 20 г. Рабочая программа мокшиной Людмилы Павловны Государственное образовательное учреждение
средняя общеобразовательная школа №647
«Утверждаю»
Директор ГБОУ СОШ
Зинакова С.Г.
Приказ № _____________от «__»_________________20___г.
| «Согласовано»
Заместитель директора по УВР
Пойманова Е.В.
«__»________________20___г.
| «Согласовано»
Руководитель МО
Милехина С.В.
Протокол № ___ от «__»
__________________20___г.
|
РАБОЧАЯ ПРОГРАММА
Мокшиной Людмилы Павловны,
учителя математики по учебному предмету математика для 9 класса Рассмотрено на заседании
педагогического совета
протокол № ____от «__»______________20_ г.
2014-2015 учебный год
Пояснительная записка
Рабочая программа учебного предмета математика для 9 класса Государственного бюджетного образовательного учреждения средней общеобразовательной школы № 647 Восточного окружного управления образования Департамента образования г. Москвы составлена на основе:
федерального компонента государственного стандарта общего образования,
примерной программы по математике основного общего образования,
федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2014-15 учебный год,
с учетом требований к оснащению образовательного процесса в соответствии с содержанием учебных предметов компонента государственного стандарта общего образования,
базисного учебного плана 2010 года.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели и задачи:
Развитие:
Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
Математической речи;
Сенсорной сферы; двигательной моторики;
Внимания; памяти;
Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
Волевых качеств;
Коммуникабельности;
Ответственности.
Цели и задачи, решаемые при реализации рабочей программы
расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;
выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;
дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;
научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;
развить умение применять тригонометрический аппарат при решении геометрических задач;
расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;
дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
формировать ИКТ компетентность через уроки с элементами ИКТ;
формировать навык работы с тестовыми заданиями;
подготовить учащихся к итоговой аттестации в новой форме.
В ходе освоения содержания курса учащиеся получают возможность:
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а є 0;
выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем;
познакомиться с понятиями арифметической и геометрической прогрессий как числовых последовательностей особого вида;
познакомиться с начальными сведениями из теории вероятностей;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развивать логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
формирования математического аппарата для решения задач из математики, смежных предметов, окружающей реальности;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;
научиться проводить операции над векторами, научиться вычислять длину и координаты вектора, угол между векторами;
научиться решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
научиться проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
нагляднее представить изучаемый материал;
освоить проектную деятельность;
развивать творческие способности.
Место предмета в учебном плане Согласно федеральному базисному учебному плану на изучение математики в 9 классе отводится не менее 170 часов из расчета 5 ч в неделю, по школьному учебному плану 3 часа в неделю алгебры и 2 часа в неделю геометрии в течение всего учебного года, итого 102 часа алгебры и 68 часов геометрии.
Тематическое и календарно-тематическое планирование представлены в материалах с добавлением 1 часа в 1 полугодии на курс алгебры, итого 118 часов алгебры и 1 часа во 2 полугодии на курс теории вероятности, итого 18 часов, и сделаны в соответствии с учебниками:
«Алгебра, 9», Ю.Н. Макарычева, Н.Г. Миндюка и др., М.: Просвещение, 2010
Ю. Н. Тюрин, А. А. Макаров «Теория вероятностей и статистика», (МЦКО, Московские учебники, 2010 г.)
А.В. Погорелов «Геометрия, 7-9 класс» (М.: Просвещение, ОАО «Московские учебники»,2010) Уровень обучения – базовый
Срок реализации рабочей учебной программы – один учебный год. Тематическое планирование.
№ п/п
| Наименование разделов и тем
| Максимальная нагрузка учащегося, ч.
| Из них
| Кодификатор
| Теоретическое обучение, ч.
| Контрольная/Самостоятельная работа, ч.
|
| Алгебра
|
|
|
|
|
| Квадратичная функция
| 27
| 25
| 2
| 5.1.7
|
| Степенная функция и корень n-ой степени
| 6
| 5
| 1
| 5.1.9
|
| Уравнения и системы уравнений
| 19
| 17
| 2
| 3.1.6
3.1.7
3.1.10
|
| Неравенства с двумя переменными
| 9
| 8
| 1
| 3.2.5
|
| Арифметическая и геометрическая прогрессии
| 15
| 14
| 2
| 4.2.1-4
|
| Тригонометрические выражения и их преобразования
| 20
| 19
| 1
|
|
| Повторение.
| 22
| 20
| 2
|
|
| Итого
| 118
| 107
| 11
|
|
| Геометрия
|
|
|
|
| 1.
| Подобие фигур
| 16
| 13
| 3
| 7.2.9
| 2.
| Многоугольники
| 15
| 14
| 1
| 7.3.4-5
| 3.
| Решение треугольников
| 8
| 7
| 1
| 7.2.11
| 3.
| Площади фигур
| 20
| 18
| 2
| 7.5.4-8
| 6.
| Повторение
| 2
| 2
|
|
|
| Итого
| 68
| 61
| 7
|
|
| Теория вероятности и статистика
|
|
|
|
| 1.
| Геометрическая вероятность
| 2
| 2
|
| 8.2.3
| 2.
| Случайные величины
| 7
| 6
| 1
| 8.3.1
| 3.
| Закон больших чисел
| 3
| 3
|
|
| 4
| Бином Ньютона, треугольник Паскаля
| 3
| 3
|
|
| 5.
| Резерв
| 1
| 1
| 0
|
| 6
| ИКР
| 1
|
| 1
|
|
| Итого
| 18
| 17
| 2
|
| Ведущие формы и методы, технологии обучения
Обучение несет деятельностный характер, акцент делается на обучение через практику, продуктивную работу учащихся в малых группах, использование межпредметных связей, развитие самостоятельности учащихся и личной ответственности за принятие решений. Применяются на уроках элементы ИКТ-технологии, личностно-ориентированной технологии, технологии интегрированного обучения, проблемного обучения; проектного обучения.
Механизмы формирования ключевых компетенций
В настоящее время актуальны компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения:
приобретение математических знаний и умений;
овладение обобщенными способами мыслительной, творческой деятельностей;
освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной.
Компетентностный подход обеспечивает совершенствование математических навыков, содержит сведения о способах добывания и практическом применении математических знаний, способствует развитию учебно-познавательной и рефлексивной компетенции. Это содержание обучения является базой для развития коммуникативно - информационной компетенции учащихся. Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития математических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности. Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет учащимся адаптироваться в мире, где объем информации, растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.
В ходе преподавания математики в основной школе, следует обращать внимание на то, чтобы учащиеся овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В связи с изложенным:
целью предмета становится не процесс, а достижение учащимися определенного результата;
в процедуру оценивания включается рефлексия, наблюдение за деятельностью учащихся;
содержание материала урока подбирается так, чтобы оно было источником для самостоятельного поиска решения проблемы, способствовало развитию у учащихся познавательной активности, мышления, творчества, чтобы позволяло каждому ученику реализовать в процессе обучения свои возможности;
целенаправленно используются межпредметные связи для эффективного достижения целей;
обращение к жизненному опыту учащихся;
практическая применимость выдвигается на первое место не только как критерий обученности, но и как инструмент обучения.
Элементы педагогических технологий: интегрированного обучения; проблемного обучения; проектного обучения являются механизмами формирования ключевых компетенций учащихся.
Планируется использование элементов новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно – тематического планирования, связанные с объективными причинами.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
Требования к уровню подготовки выпускников основной школы
АРИФМЕТИКА
знать/уметь/понимать:
выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;
переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов; применять стандартный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;
изображать числа точками на координатной прямой;
выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения степеней с целыми показателями и корней; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближенное значение числового выражения; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи на движение и работу; задачи, связанные с отношением и с пропорциональностью величин; основные задачи на дроби и на проценты; задачи с целочисленными неизвестными.
Применять полученные знания:
для решения несложных практических расчетных задач, в том числе, с использованием при необходимости справочных материалов и простейших вычислительных устройств; для устной прикидки и оценки результатов вычислений; для проверки результата вычисления на правдоподобие, используя различные приемы; для интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений. АЛГЕБРА
знать/уметь/понимать:
составлять буквенные выражения и формулы по условиям задач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);
решать линейные неравенства с одной переменной и их системы, квадратные неравенства;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона изменения величин;
определять значения тригонометрических выражений по заданным значениям углов;
находить значения тригонометрических функций по значению одной из них;
определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пересечения графиков;
применять графические представления при решении уравнений, систем, неравенств;
находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;
строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;
распознавать арифметические и геометрические прогрессии, использовать формулы общего члена и суммы нескольких первых членов.
Применять полученные знания:
для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах; при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);
при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости;
для расчетов, включающих простейшие тригонометрические формулы;
при решении планиметрических задач с использованием аппарата тригонометрии.
ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
знать/уметь/понимать:
оценивать логическую правильность рассуждений, в своих доказательствах использовать только логически корректные действия, понимать смысл контрпримеров;
извлекать информацию, представленную в таблицах, на диаграммах, на графиках; составлять таблицы; строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений; находить частоту события;
в простейших случаях находить вероятности случайных событий, в том числе с использованием комбинаторики.
Применять полученные знания:
при записи математических утверждений, доказательств, решении задач;
в анализе реальных числовых данных, представленных в виде диаграмм, графиков;
при решении учебных и практических задач, осуществляя систематический перебор вариантов;
при сравнении шансов наступления случайных событий;
для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.
ГЕОМЕТРИЯ
знать/уметь/понимать:
распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;
изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; представлять их сечения и развертки;
вычислять значения геометрических величин (длин, углов, площадей, объемов);
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллельной данной прямой; треугольника по трем сторонам;
решать простейшие планиметрические задачи в пространстве.
Применять полученные знания:
при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);
для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).
|
|
|