Компьютерное обеспечение уроков В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения.
Демонстрационный материал (слайды)
Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.
При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.
Задания для устного счета.
Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.
Тренировочные упражнения.
Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
Электронные учебники.
Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.
Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета.
Цели изучения курса математики в 5—6-м классах
Целями изучения курса математики в 5—6-м классах являются: систематическое развитие понятия числа; выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка учащихся к изучению систематических курсов алгебры и геометрии.
Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин. Структура программы
Программа по математике для 6-го класса общеобразовательных учреждений состоит из двух разделов: Содержание программы, Требования к математической подготовке учащихся
К программе прилагаются Тематическое и Примерное поурочное планирование учебного материала.
Раздел Содержание программы включает в себя минимальный объем материала, обязательного для изучения. Содержание здесь распределено не в соответствии с порядком изложения, принятым в учебнике, а по основным содержательным линиям, объединяющим связанные между собой вопросы. Это позволяет учителю, отвлекаясь от места конкретной темы в курсе, оценить ее значение по отношению к соответствующей содержательной линии, правильно определить и расставить акценты в обучении, организовать итоговое повторение материала.
В разделе Требования к математической подготовке учащихся определяется итоговый уровень умений и навыков, которыми учащиеся должны владеть по окончании данного этапа обучения. Требования распределены по основным содержательным лини ям курса и характеризуют тот безусловный минимум, которого должны достичь все учащиеся.
В разделах Тематическое планирование и Примерное поурочное планирование приводится конкретное планирование, ориентированное на учебник математики для 6-го класса Н. Я. Виленкина и др.
СОДЕРЖАНИЕ ПРОГРАММЫ
Числа и вычисления
Степень с натуральным показателем.
Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители.
Основное свойство дроби. Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.
Отношения. Пропорции. Основное свойство пропорции.
Решение текстовых задач арифметическими приемами.
Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.
Рациональные числа. Изображение чисел точками координатной прямой.
Прикидка результатов вычислений. Выражения и их преобразования
Буквенные выражения. Преобразование буквенных выражений. Уравнения и неравенства
Уравнение с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений. Числовые неравенства. Функции
Прямоугольная система координат на плоскости. Таблицы и диаграммы. Графики реальных процессов. Геометрические фигуры и их свойства. Измерение геометрических величин
Параллельные прямые. Перпендикулярные прямые.
Многоугольники. Правильные многоугольники.
Площадь круга. Множества и комбинаторика
Множество. Элемент множества, подмножество1. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
Числа и вычисления
В результате изучения курса математики учащиеся должны:
правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, иррациональное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной или обыкновенной дроби);
сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;
— выполнять арифметические действия с рациональными числами, находить значения степеней; сочетать при вычислениях устные и письменные приемы;
составлять и решать пропорции, решать основные задачи на дроби, проценты;
округлять целые числа и десятичные дроби, производить прикидку результата вычислений.
Выражения и их преобразования
В результате изучения курса математики учащиеся должны:
— правильно употреблять термины «выражение», «числовое выражение», «буквенное выражение», «значение выражения»,
понимать их использование в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения», «разложить на множители»;
составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;
находить значение степени с натуральным показателем.
Уравнения и неравенства
В результате изучения курса математики учащиеся должны:
понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики;
правильно употреблять термины «уравнение», «неравенство», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение, неравенство»;
решать линейные уравнения с одной переменной.
Функции
В результате изучения курса математики учащиеся должны:
познакомиться с примерами зависимостей между реальными величинами (прямая и обратная пропорциональности, линейная функция);
познакомиться с координатной плоскостью, знать порядок записи координат точек плоскости и их названий, уметь построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;
находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;
интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.
Геометрические фигуры и их свойства. Измерение геометрических величин
В результате изучения курса математики учащиеся должны:
распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, многоугольники, окружности, круги); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;
владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
решать задачи на вычисление геометрических величин (длин, углов, площадей, объемов), применяя изученные свойства фигур и формулы.
ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА В учебном плане для основной школы указано минимальное число учебных часов, отводимых на изучение математики в каждом классе. Программа составлена на основе Базисного учебного плана 2004 г.; согласно учебного плану МОУ «СОШ №25» из школьного компонента добавлено 35 учебных часов из расчета 1 ч в неделю и поэтому программа рассчитана на 210 часов в год (6 часов в неделю).
Ниже предлагается вариант тематического и поурочного планирования — шести часах (соответствует второму варианту Программы автора-составителя В.И. Жохова).
|