|
Номер параграфа Содержание материала Номер параграфа
| Содержание материала
| Кол-во часов
| Характеристика основных видов деятельности ученика (на уровне учебных действий)
| 7 класс
| Глава I. Начальные геометрические сведения
| 7
| Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямы называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами
| 1, 2
3
4, 5 6
| Прямая и отрезок. Луч и угол
Сравнение отрезков и углов
Измерение отрезков. Измерение углов
Смежные и вертикальные углы
Перпендикулярные прямые
Контрольная работа №1
| 1
1
2 1
1
1
| Глава II. Треугольники
| 14
| Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и боле сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи
| 1
2
3
4
| Первый признак равенства треугольников
Медианы, биссектрисы и высоты треугольника
Решение задач
Второй и третий признаки равенства треугольников
Окружность
Задачи на построение
Решение задач
Контрольная работа №2
| 3 3 1
2 1
2
1
1
| Глава Ш. Параллельные прямые
| 9
| Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образовании при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми
| 1 2
| Признаки параллельности двух прямых
Аксиомы параллельных прямых
Решение задач
Контрольная работа №3
| 3 3
2
1
| Глава IV. Соотношения между сторонами и углами треугольника
| 16
| Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи
| 1
2
3
4
| Сумма углов треугольника
Соотношения между сторонами и углами треугольника
Решение задач
Прямоугольные треугольники
Расстояние от точки до прямой
Построение треугольника по трём элементам
Решение задач
Контрольная работа №5
| 2
2 2
4
1
2 2
1
| Повторение. Решение задач. Резерв на случай потери часов
| 5
|
| 8 класс
| Глава V. Четырёхугольники
| 15
| Объяснять, что такое ломаная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапецией, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрией в окружающей нас обстановке
|
1
2
3
| Повторение изученного в 7 классе
Многоугольники
Параллелограмм и трапеция
Прямоугольник, ромб, квадрат
Решение задач
Контрольная работа №1
| 3
2
4
3
2
1
| Глава VI.Площадь
| 13
| Объяснять, как производится измерение площадей многоугольников, какие многоугольники называются равновеликими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора
| 1
2 3
| Площадь многоугольника
Площадь параллелограмма, треугольника и трапеции
Теорема Пифагора
Решение задач
Контрольная работа №2
| 2
5 3
2
1
| ГлаваVII. Подобные треугольники
| 18
| Объяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на построении и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрировать понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основное тригонометрическое тождество и значения синуса, косинуса и тангенса для углов 30, 45, 60; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы
| 1 2 3
4
| Определение подобных треугольников
Признаки подобных треугольников
Контрольная работа №3
Применение подобия к доказательству теорем и решению задач
Соотношения между сторонами и углами прямоугольного треугольника
Контрольная работа № 4
| 3 5
1
5
3
1
| Глава VIII. Окружность
| 15
| Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырёхугольника; о свойстве улов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ
| 1
2
3 4
| Касательная к окружности
Центральные и вписанные углы
Четыре замечательные точки треугольника
Вписанная и описанная окружности
Решение задач
Контрольная работа № 5
| 3
3
3 3
2
1
| Повторение. Решение задач. Резерв на случай потери часов
| 7
|
| 9 класс
| Глава IX.Векторы
| 10
| Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимися к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач
|
1
2
3
| Повторение изученного в 7-8 классах
Понятие вектора
Сложение и вычитание векторов
Умножение вектора на число.
Применение векторов к решению задач
Контрольная работа №1
| 2 1
3
3
1
| ГлаваX. Метод координат
| 10
| Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой
|
1 2 3
| Лемма о неколлинеарных векторах
Координаты вектора
Простейшие задачи в координатах
Уравнения окружности и прямой
Решение задач
Контрольная работа №2
| 1 1
3 3
1
1
| Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов
| 11
| Формулировать и иллюстрировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение векторов при решении задач
| 1 2 3
| Синус, косинус, тангенс, котангенс угла
Соотношения между сторонами и углами треугольника
Скалярное произведение векторов
Решение задач
Контрольная работа №3
| 3 4 2 1
1
| Глава XII. Длина окружности и площадь круга
| 12
| Формулировать определение правильного многоугольника; формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач
| 1
2
| Правильные многоугольники
Длина окружности и площадь круга
Решение задач
Контрольная работа №4
| 4 4
3
1
| Глава XIII. Движения
| 8
| Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ
| 1
2
| Понятие движения
Параллельный перенос и поворот
Решение задач
Контрольная работа №5
| 2
2
3
1
| Глава XIV. Начальные сведения из стереометрии
| 8
| Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n – угольная призма, её основания, боковые грани и боковые рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить (с помощью принципа Кавальери) формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар
| 1
2
| Многогранники
Тела и поверхности вращения
Об аксиомах геометрии
| 3
3
2
| Повторение. Подготовка к экзамену. Решение задач. Резерв на случай потери часов
| 9
|
| |
|
|