Главная страница

Элективный курс по математике в 11 классе «Задачи с модулями и с параметрами»



Скачать 75.23 Kb.
НазваниеЭлективный курс по математике в 11 классе «Задачи с модулями и с параметрами»
Дата05.04.2016
Размер75.23 Kb.
ТипЭлективный курс


ГБОУ СОШ с Русский Байтуган

м.р. Камышлинский Самарской области


Элективный курс по математике в 11 классе
«Задачи с модулями и с параметрами»

Учитель математики: Сафина Р.М.

Пояснительная записка
Основная функция курса по выбору направлена на повышение интереса к математике. Общеизвестно, что на вступительных экзаменах в ВУЗы довольно часто предлагаются задачи с параметрами, которые содержатся в заданиях ЕГЭ по математике. Нередко учащиеся не могут справиться с простейшими задачами, содержащими параметры и модули, что свидетельствует об отсутствии у части их навыков решения такого типа задач. Известно, что в программах по математике для неспециализированных школ этим задачам отводится совсем незначительное место.

Элективный курс «Задачи с модулями и параметрами» предназначен для 11 класса общеобразовательной школы. Данный элективный курс направлен на расширение знаний учащихся, повышение уровня математической подготовки через решение большого класса задач. Он расширяет и углубляет отдельные темы общеобразовательных программ по математике, не нарушая ее целостности, а также предполагает изучение некоторых тем, выходящих за их рамки. Навыки в решении уравнений, неравенств, содержащих модуль и параметры, совершенно необходимы любому ученику, желающему хорошо подготовиться к экзаменам и поступлению в дальнейшем в высшие учебные заведения. Программа элективного курса применима для различных групп школьников, независимо от выбора их будущей профессии. Курс рассчитан на 17 часов.

Наряду с основной задачей обучения математики - обеспечением прочного и сознательного овладения учащимися системой математических знаний и умений, данный курс предусматривает формирование устойчивого интереса к предмету, выявление и развитие математических способностей, ориентацию на профессии, существенным образом связанные с математикой.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющего в определённых умственных навыках. В процессе решения задач с параметрами и модулями в арсенал приёмов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ, классификация и систематизация, аналогия.

Именно задачи с параметрами обладают диагностической и прогностической ценностью, которые позволяют проверить знания основных разделов школьного курса математики, уровень логического мышления, первоначальные навыки исследовательской деятельности.

Задачи, предлагаемые в данном курсе, интересны и часто не просты в решении, что позволяет повысить учебную мотивацию учащихся и проверить свои способности к математике. Вместе с тем, содержание курса позволяет ученику любого уровня активно включаться в учебно-познавательный процесс и максимально проявить себя.

При решении таких задач школьники учатся мыслить логически, творчески. Это хороший материал для учебно-исследовательской работы.

Цели курса:


  • сформировать у учащихся представление о зада­чах с параметрами и модулем как задачах исследовательского характера, показать их многообразие;

  • способствовать подготовке учащихся к успешной сдаче ЕГЭ, к вступи­тельному экзамену по математике. перейти от репродуктивного уровня усвоения материала к творческому, научить применять знания при выполнении нестандартных заданий.


Задачи курса:

Образовательные:

  • формирование у учащихся умений решать нестандартные задания;

  • углубить знания по математике, предусматривающие формирование у учащихся устойчивого интереса к предмету;

  • расширить математические представления учащихся о приёмах и методах решения задач с модулями и параметрами;

  • обеспечить подготовку к поступлению в вуз и продолжению образования;

  • обеспечить подготовку к профессиональной деятельности, требующей высокой математической культуры.


Развивающие:

  • выявить и развить математические способности, продолжить развитие математической культуры;

  • как можно полнее развить потенциальные творческие способности каждого учащегося;

  • повышение уровня  математического и логического мышления учащихся;

  • развитие навыков исследовательской деятельности.



Воспитательные:

  • обучение задачам с параметрами потребует от учащихся умственных и волевых усилий, развитого внимания;

  • воспитание таких качеств,  как  активность, творческая инициатива, умений коллективно-познавательного труда.



В результате изучения данного курса учащиеся

должны знать:

    • понятие параметра, прочно усвоить понятие модуль числа;

    • алгоритмы решений задач с модулями и параметрами;

    • зависимость количества решений неравенств, уравнений и их систем от значений параметра;

    • свойства решений уравнений, неравенств и их систем; функций в задачах с параметрами.

должны уметь:

    • уметь решать любые уравнения, неравенства с модулем;

    • строить графики уравнений, содержащие модули;

    • уметь решать уравнения, неравенства с параметром;

    • знать и уметь применять нестандартные приемы и методы решения уравнений, неравенств и систем.




п/п

Тема занятия


Кол-во часов

Виды деятельности

Решение задач с модулем (6 часов)


1

Модуль действительного числа. Геометрическая интерпретация. Уравнения, содержащие абсолютную величину.


1

Лекция.

2

Неравенства, содержащие абсолютную величину.



1

Беседа

3

Графики функций. Построение графиков функций, связанных с модулем.

1

Практическая работа

4 - 5

Решение уравнений и неравенств различных видов, содержащих модули. Графическая интерпретация.

2

Сам. работа

6

Контрольное тестирование

1

Тестирование




Решение задач с параметрами (6 часов)

7

Понятие параметра.

1

Беседа

8


Уравнения с параметрами. Общий метод решения уравнений с параметрами.

1

Лекция

9

Неравенства с параметрами.

1

Лекция

10-11

Количество корней в зависимости от значений параметров.

2

Беседа

12

Контрольное тестирование

Викторина «Кто хочет стать отличником»


1

Тестирование




Нестандартные методы и приемы решения уравнений, неравенств и систем,

содержащих модули и параметры (5 часов)


13

Графические и аналитические методы. Классификация задач.

1

Лекция

14

Свойства решений уравнений, неравенств и их систем.

1

Лекция

15-16

Свойства функций в задачах с параметрами и модулями.

2

Решение задач

17

Итоговое тестирование

1

Тест



Тематическое планирование курса
Учитель _________ Сафина Р.М.
Литература:



  1. Литвиненко В.Н., Мордкович А. Г. «Практикум по решению математических задач», М.: «Просвещение», 2008г.

  2. Ястрибинецкий Г.А. «Задачи с параметрами», М., «Дрофа», 2003

  3. Шарыгин И.Ф. «Факультативный курс по математике. Решение задач».

  4. Рязановский А.Р. «Алгебра и начала анализа: 500 способов и методов решения задач по математике для школьников и поступающих в вузы», М., «Дрофа», 2001