|
Учебник для общеобразовательных учреждений. /С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин Изд. 5-е. М.: Просвещение, 2011
Рабочая программа
Государственного бюджетного общеобразовательного
учреждения г. Москвы
« Школы с углубленным изучением отдельных предметов №879»
на 2014-2015 учебный год
по курсу «Математика » для 5 класса
к учебнику С.М. Никольский, М.К. Потапов,
Н.Н. Решетников, А.В. Шевкин «Математика»
Учителя математики
Назрановой Ларисы Петровны
1. Пояснительная записка
Рабочая программа по математике составлена на основе федерального государственного образовательного стандарта, учебного плана, примерной программы основного общего образования по математике с учетом авторской программы по математике С.М. Никольского, М.К.Потапова, Н.Н.Решетникова, А.В.Шевкина. с включением тем «Элементы логики и комбинаторики».
Рабочая программа ориентирована на использование учебно - методического комплекса:
Математика 5 класс: учебник для общеобразовательных учреждений. /С.М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – Изд. 5-е. – М.: Просвещение, 2011,
Математика 5 класс: дидактические материалы по математике/ М. К .Потапов , А В. Шевкин – М.: Просвещение, 2011.
Математика 5 класс: рабочая тетрадь по математике : пособие для учащихся общеобразовательных учреждений/ М .К. Потапов , А. В. Шевкин – М.: Просвещение,2011
Математика 5 класс: тематические тесты/ П. В. Чулков, Е. Ф. Шершнев, О .Ф Зарапина - М.: Просвещение,2011
Математика 5 класс: книга для учителя/ М. К. Потапов , А. В .Шевкин – М.: Просвещение,2011
Задачи на смекалку 5 класс: И. Ф. Шарыгин пособие для учащихся общеобразовательных учреждений/- М.: Просвещение, 2011
Выбор данной авторской программы и учебно-методического комплекса обусловлен с преемственностью целей образования, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся, и опираются на вычислительные умения и навыки учащихся, полученные на уроках математики 1 – 4 классов: на знании учащимися основных свойств на все действия.
Рабочая программа имеет целью обновление требований к уровню подготовки школьников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта- переход от суммы «предметных результатов» к « метапредметным результатам». Способствует решению следующих задач изучения математики ступени основного образования:
приобретение математических знаний и умений:
овладение обобщенными способами мыслительной, творческой деятельности:
освоение компетенций учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся.
В основу настоящей программы положены педагогические и дидактические принципы (личностно ориентированные; культурно - ориентированные; деятельностно - ориентированные и т.д.) вариативного развивающего образования, и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения. Культурно - ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип. Деятельностно - ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.
Программа задает перечень вопросов, которые подлежат обязательному изучению в основной школе. Она так же является логическим продолжением курса математики начальной школы (принцип преемственности). Программа позволяет обеспечивать формирование как предметных умений, так и универсальных учебных действий школьников;
программа позволяет обеспечивать достижение целей в направлении личностного развития, в метапредметном направлении и предметном направлении.
Обучение математике в основной школе направлено на достижение следующих целей:
в направлении личностного развития:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
в предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур. 2. Общая характеристика учебного предмета «Математика»
Настоящая программа основного общего образования по математике составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте общего образования, с учетом преемственности с Примерными программами для начального общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования. 3. Место предмета «Математика» в учебном плане. В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается в 5классе – по 5 часов в неделю.
Программа рассчитана на 170 часов. Программой предусмотрено проведение: 8 тематических контрольных работ и 3-х административных контрольных работ (входная, полугодовая и итоговая контрольная работа). 4. Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих результатов:
в направлении личностного развития:
Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
Развитие интереса к математическому творчеству и математических способностей;
Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
Представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
Креативность мышления, инициатива, находчивость, активность при решении математических задач;
Умение контролировать процесс и результат учебной математической деятельности;
Способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
в метапредметном направлении:
Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
в предметном направлении:
Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;
Овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
Умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
Развитие представлений о числе, натуральных чисел, овладение навыками устных, письменных, инструментальных вычислений;
Овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
Усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
Умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия») являются следующие качества:
независимость и критичность мышления;
воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
система заданий учебников;
представленная в учебниках в явном виде организация материала по принципу минимакса;
использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Метапредметными результатами изучения курса «Математика» являются первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Предметными результатами изучения предмета «Математика» в 5 классе являются следующие умения: Использовать при решении математических задач, их обосновании и проверке найденного решения знание:
названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
как образуется каждая следующая счётная единица;
названия и последовательность разрядов в записи числа;
названия и последовательность первых трёх классов;
сколько разрядов содержится в каждом классе;
соотношение между разрядами;
сколько единиц каждого класса содержится в записи числа;
как устроена позиционная десятичная система счисления;
единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).
Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;
выполнять умножение и деление с 1 000;
вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
раскладывать натуральное число на простые множители;
находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;
решать простые и составные текстовые задачи;
выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;
находить вероятности простейших случайных событий;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
строить простейшие линейные, столбчатые и круговые диаграммы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Регулятивные УУД:
5–6-й классы – самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки. Коммуникативные УУД: – самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения. Календарно – тематическое планирование
№
уро
ка
|
Дата
| №
Пунк
та
| Тема
| Кол-во часов
| икт
| Подго
товка к ОГЭ
|
|
| 1.
| Глава 1. Натуральные числа и нуль.
| 40
|
|
| 1.
| 01.09
| П. 1.1
| Ряд натуральных чисел.
| 1
| ДМ «Натуральные числа»
|
|
| 02.09
| П. 1.2
| Десятичная система записи натуральных чисел.
| 1
| Задания для устного счета. Упр. 1
| 1.1.1
|
| 03.09
| П. 1.3
| Сравнение натуральных чисел.
| 1
| ДМ «Меньше, больше»
Задания для устного счета. Упр. 2
|
|
| 04.09
| П. 1.4
| Сложение. Законы сложения.
| 1
| ДМ «Сложение и вычитание натуральных чисел»
| 1.1.2
|
| 05.09
| П. 1.5
| Вычитание.
| 1
| CD Математика 5 – 11 классы
«Действия с натуральными числами».
| 1.1.2
|
| 08.09.
| П. 1.6
| Решение текстовых задач с помощью сложения и вычитания.
| 1
| Задания для устного счета. Упр. 3
|
|
| 09.09
|
| Решение текстовых задач с помощью сложения и вычитания.
| 1
|
|
|
| 10.09
|
| Решение текстовых задач с помощью сложения и вычитания.
| 1
|
|
|
| 11.09
| П. 1.7
| Умножение. Законы умножения.
| 1
| Задания для устного счета. Упр. 3
|
|
| 12.09
|
| Умножение. Законы умножения.
| 1
|
|
|
| 15.09.
| П. 1.8
| Распределительный закон.
| 1
| Задания для устного счета. Упр. 5
|
|
| 16.09
|
| Распределительный закон.
| 1
|
|
|
| 17.09
|
| Распределительный закон.
| 1
|
|
|
| 18.09
| П. 1.9
| Сложение и вычитание столбиком
| 1
| ДМ «Сложение и вычитание натуральных чисел»
| 1.1.2
|
| 19.09
|
| Сложение и вычитание столбиком
| 1
|
| 1.1.2
|
| 22.09.
|
| Контрольная работа №1 по теме «Действия с натуральными числами».
| 1
|
|
|
| 23.09
| П. 1.10
| Умножение чисел столбиком.
| 1
| ДМ « Умножение и деление натуральных чисел».
|
|
| 24.09
|
| Умножение чисел столбиком.
| 1
| Задания для устного счета. Упр. 4.
| 1.1.3
|
| 25.09
| П. 1.11
| Степень с натуральным показателем.
| 1
|
|
|
| 26.09
|
| Степень с натуральным показателем.
| 1
|
|
|
| 29.09
|
| Степень с натуральным показателем.
| 1
|
|
|
| 30.09
| 1.12
| Деление нацело.
| 1
| Задания для устного счета. Упр. 6
| 1.1.4
|
| 01.10
|
| Деление нацело.
| 1
|
|
|
| 02.10
|
| Входная контрольная работа
| 1
|
|
|
| 03.10
| 1.13
| Решение текстовых задач с помощью умножения и деления
| 1
|
|
|
| 06.10
|
| Решение текстовых задач с помощью умножения и деления
| 1
|
|
|
| 07.10
|
| Решение текстовых задач с помощью умножения и деления
| 1
|
|
|
| 08.10
| 1.14
| Задачи «на части».
| 1
|
|
|
| 09.10
|
| Задачи «на части».
| 1
|
|
|
| 10.10
|
| Задачи «на части».
| 1
|
|
|
| 13.10
| 1.15
| Деление с остатком.
| 1
| Задания для устного счета. Упр. 7
| 1.1.7
|
| 14.10
|
| Деление с остатком.
| 1
|
|
|
| 15.10
| 1.16
| Числовые выражения.
| 1
|
| 1.3.6
|
| 16.10
|
| Числовые выражения.
| 1
|
|
|
| 17.10
|
| Контрольная работа №2 по теме «Умножение и деление натуральных чисел».
| 1
|
|
|
| 20.10
| 1.17
| Задачи на нахождение двух чисел по их сумме и разности.
| 1
|
|
|
| 21.10
|
| Задачи на нахождение двух чисел по их сумме и разности.
| 1
|
|
|
| 22.10
|
| Задачи на нахождение двух чисел по их сумме и разности.
| 1
|
|
|
| 23.10
|
| Задачи на нахождение двух чисел по их сумме и разности.
| 1
|
|
|
| 24.10
|
| Занимательные задачи к главе 1.
| 1*
| CD Математика 5 – 11 классы «Портреты и биография знаменитых математиков»
|
|
| каникулы
|
| II триместр
|
|
|
|
|
| 2.
| Глава 2. Измерение величин
| 36
|
|
|
| 05.11
| П. 2.1
| Прямая. Луч. Отрезок.
| 1
| ДМ «Отрезок. Треугольник». «Плоскость. Прямая»
|
|
| 06.11
|
| Прямая. Луч. Отрезок.
| 1
|
|
|
| 07.11
| П. 2.2
| Измерение отрезков.
| 1
|
|
|
| 10.11
|
| Измерение отрезков.
| 1
|
|
|
| 11.11
| П. 2.3
| Метрические единицы длины.
| 1
|
|
|
| 12.11
|
| Метрические единицы длины.
| 1
|
|
|
| 13.11
| П. 2.4
| Представление натуральных чисел на координатном луче.
| 1
| ДМ «Шкалы координаты», «Координаты на прямой»
|
|
| 14.11
|
| Представление натуральных чисел на координатном луче.
| 1
|
|
|
| 17.11
|
| Контрольная работа №3 по теме «Прямая. Луч. Отрезок»
| 1
|
|
|
| 18.11
| П. 2.5
| Окружность и круг. Сфера и шар.
| 1
| Демонстрационный материал «Окружность»
|
|
| 19.11
|
| Окружность и круг. Сфера и шар.
| 1
|
|
|
| 20.11
| П. 2.6
| Углы. Измерение углов.
| 1
|
|
|
| 21.11
|
| Углы. Измерение углов.
| 1
|
|
|
| 24.11
| П. 2.7
| Треугольники.
| 1
| Демонстрационный материал
«Отрезок. Треугольник»
|
|
| 25.11
|
| Треугольники.
| 1
|
|
|
| 26.11
| П. 2.8
| Четырёхугольники.
| 1
|
|
|
| 27.11
|
| Четырёхугольники.
| 1
|
|
|
| 28.11
| П. 2.9
| Площадь прямоугольника. Единицы площади.
| 1
| Демонстрационный материал «Площади».
Задания для устного счета. Упр. 9
|
|
| 01.12
|
| Площадь прямоугольника. Единицы площади.
| 1
|
| 1.5.1
|
| 02.12
| П. 2.10
| Прямоугольный параллелепипед.
| 1
| Демонстрационный материал «Прямоугольный параллелепипед»
|
|
| 03.12
|
| Прямоугольный параллелепипед.
| 1
|
|
|
| 04.12
|
| Прямоугольный параллелепипед.
| 1
|
|
| |
|
|