|
Решение неполных квадратных уравнений Урок алгебры в 8 классе.
тема: “Решение неполных квадратных уравнений”
Цели:
обучающая:
продолжить формировать умения в решении неполных квадратных уравнений:
с помощью вынесения общего множителя за скобки.
с помощь разложения левой части уравнения на множители (формула сокращенного умножения “разность квадратов”).
систематизация знаний по решению неполных квадратных уравнений.
воспитывающие:
создать условия для развития познавательной активности и самооценки.
Тип урока: закрепление изученного материала.
Ход урока:
Организационный момент. К уроку учащимся было предложено повторить темы: “Формулы сокращенного умножения” и способ вынесения общего множителя за скобки.
Проверка усвоения знаний в форме «найди ошибку». На доске записаны решения шести уравнений с ошибками и без ошибок. Учащиеся должны найти ошибки и рассказать алгоритм решения уравнения, записать верное решение.
1. 2х 2 - х = 0 2. 4 х 2 - 25 = 0
2х 2 = х 4 х 2= - 25
х 2=
нет решения 3. х2 – 9 = 0 4. 5х2 =0
х = 3 х =5 5.36х2 +1 =0 6. 3х2 – 9 = 0
36х2 = 1 х2 – 3 = 0
х 2=
х = ; х = .
3. Систематизация знаний.
После решения уравнений, нахождения ошибок и повторения алгоритмов решения, учащиеся парами составляют таблицу:
Вид уравнения
| Метод решения
| Число решений
|
В тетрадях совместно заполняют таблицу. Проверяем, обсуждаем.
| Разложить по формуле разность квадратов, левую часть уравнения.
| Два решения если c<0 и нет решений, если c>0
|
| Вынесение общего множителя x за скобки.
| Два решения
|
|
x=0
|
Одно решение
|
4. После этого выполним трехуровневую самостоятельную работу. Уровень учащиеся выбирают сами.
Самостоятельная работа:
I уровень (обязательный)
8х2 =0;
х 2 + 7х = 0;
2х2 - 18 = 0. II уровень (средний)
9 х 2 - 16 = 0;
2х2 = 3х;
2 = 7х2 +2. III уровень (повышенный)
- 0,3х2 + 9 = 0 + =0 При каком a один из корней уравнения равен 1?
На скрытой части доски после решения самостоятельной работы учитель представляет ответы и частичное решение уравнений, учащиеся могут оценить результат своей работы. 5. В качестве домашнего задания учитель предлагает разноуровневые задания. 1. Уровень:
а) 3 х 2 - 9 = 0; б) х 2 - 2х = 0; в) х2 + 9 = 0; г) 2х2+8 = 0.
2. Уровень:
a) 25 х 2 - 49 = 0; б) 3х 2 - 5х = 0; в) 3х2 + 27 = 0;
г) . При каком a один из корней уравнения равен 1?
3. Уровень:
a) 5 – 0,2х 2 = 0;
б) - =0
в) (3х + 2)2 = 4+12х;
г) х2 +(а +1)(х + а – 8) =0. При каком значении a корни уравнения являются противоположными числами? 6. Итог урока: если хватает времени, то можно самостоятельно проверить свои работы, сверив ответы с доской (на оборотной стороне), выставление отметок, запись домашнего задания. 0> |
|
|