Главная страница

Рабочая программа по математике 9 класс ( Базовый уровень ) Волкова Любовь Ивановна 2012-2013 уч год Пояснительная записка



НазваниеРабочая программа по математике 9 класс ( Базовый уровень ) Волкова Любовь Ивановна 2012-2013 уч год Пояснительная записка
страница2/5
Дата10.03.2016
Размер0.56 Mb.
ТипРабочая программа
1   2   3   4   5

Векторы. Метод координат (19 ч).


Понятие вектора. Абсолютная величина и направление век­тора. Равенство векторов. Сложение и вычитание векторов. Ум­ножение вектора на число. Коллинеарные векторы. Проекция на ось. Разложение вектора по координатным осям. Координа­ты вектора.

Основная цель — сформировать понятие вектора как направленного отрезка, показать учащимся применение век­тора к решению простейших задач.

При изучении данной темы основное внимание уделяется выполнению операций над векторами в геометрической фор­ме. Именно этот материал используется при изучении физи­ки. Поэтому для более глубокого понимания векторов и опе­раций над ними полезно воспользоваться знаниями учащихся о векторных величинах, полученных на уроках физики.

Понятие равенства векторов вводится на интуитивной основе. Завершается изучение темы знакомством с понятием коор­динат вектора.

Системы уравнений (15 ч).

Рациональное уравнение с двумя переменными. Решение урав­нения р{х; у) = 0. Равносильные уравнения с двумя переменны­ми. Формула расстояния между двумя точками координатной плоскости. График уравнения - а)2 + (у - b)г = г2. Система уравнений с двумя переменными. Решение системы уравнений. Неравенства и системы неравенств с двумя переменными. Методы решения систем уравнений (метод подстановки, алгеб­раического сложения, введения новых переменных). Равносиль­ность систем уравнений. Системы уравнений как математические модели реальных ситуаций.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (14 ч).


Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Соотношения между сторонами и углами треугольника.

Основная цель — познакомить учащихся с основны­ми алгоритмами решения произвольных треугольников.

В процессе изучения данной темы знания учащихся о тре­угольниках дополняются сведениями о методах вычисления эле­ментов произвольных треугольников, основанных на теоремах синусов и косинусов. Кроме того, здесь же учащиеся знакомятся еще с одной формулой площади треугольника. При этом воспро­изведения доказательств этих теорем от учащихся можно не тре­бовать.

Числовые функции (25 ч).

Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определе­ния функции. Область значений функции.

Способы задания функции (аналитический, графический, табличный, словесный).Свойства функций (монотонность, ограниченность, выпук­лость, наибольшее и наименьшее значения, непрерывность). Исследование функций: у = С,

у = kx + т, у = kx2, y = k/x, у = \х\, у = ах2 + bх + с.

Четные и нечетные функции. Алгоритм исследования функ­ции на четность. Графики четной и нечетной функций. Степенная функция с натуральным показателем, ее свойства и график. Степенная функция с отрицательным целым показате­лем, ее свойства и график. Функция у = \[х, ее свойства и график.

Длина окружности и площадь круга. Правильные многоугольники (14 ч).


Описанная и вписанная окружности. Формулы для вычисления пло­щадей и сторон правильных многоугольников; радиусов впи­санных и описанных окружностей; длины дуги окружности и площади круга. Построение правильных многоугольников.

Основная цель — расширить и систематизировать знания учащихся об окружностях и многоугольниках.

В этой теме учащиеся знакомятся с окружностями, вписан­ными в правильные многоугольники, и окружностями, опи­санными около правильных многоугольников, и их свойства­ми. Воспроизведения доказательств этих теорем можно не требовать от всех учащихся.

Решение задач на применение формул — вычисления пло­щадей и сторон правильных многоугольников; радиусов впи­санных и описанных окружностей; длины дуги окружности и площади круга — подготавливает аппарат для решения задач, связанных с многогранниками и телами вращения.

Построение правильных многоугольников с помощью циркуля и линейки ограничивается построением квадрата, правильных треугольника, шестиугольника и 2я-угольника. Эти идеи затем применяются при выводе формул длины ок­ружности и площади круга.

Здесь учащиеся на интуитивном уровне знакомятся с поня­тием предела и с его помощью рассматривают вывод формул длины окружности и площади круга.

Прогрессии (16 ч)

Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррент­ный). Свойства числовых последовательностей. Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии. Характери­стическое свойство. Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характери­стическое свойство. Прогрессии и банковские расчеты

Движение (5 ч).


Понятие движения. Симметрия фигур. Параллельный перенос и поворот.

Основная цель — познакомить с понятием движения на плоскости: симметриями, параллельным переносом, поворотом.

Понятие отображения плоскости на себя как основы для введения понятия движения рассматривается на интуитивном уровне с привлечением уже известных учащимся понятий осе­вой и центральной симметрии. Изучение понятия движения и его свойств дается в ознакомительном плане. Акцентируется внимание учащихся на том, что одно из ос­новных понятий изучаемого ими курса геометрии, а именно наложение, есть отображение плоскости на себя.

При изучении темы основное внимание уделяется вы­работке навыков построения образов точек, отрезков, треуголь­ников при симметриях, параллельном переносе, повороте.
1   2   3   4   5