|
Рабочая программа по математике 10 класс на 2010 / 2011 учебный год
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №30» г. Уссурийска Уссурийского городского округа
Рассмотрено
на ШМО учителей математики и информатики
руководитель ШМО
________Л.Д.Попова
«____»__________2010г
| Согласовано
зам. директора по УВР __________Т.А.Бабенко «____»___________2010г
| Утверждаю
директор МОУ СОШ №30
_____ Г.В.Гришина «___»_________2010г
|
Рабочая программа
по математике
10 класс
на 2010 / 2011 учебный год
учитель: Шабанова Ирина Николаевна
высшая квалификационная категория
Пояснительная записка
Рабочая программа по математике для 10 класса составлена на основе федерального компонента государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования. (Приказ МО РФ от 05.03.2004 №1089).
Рабочая программа разработана в соответствии с:
Федеральным базисным учебным планом для образовательных учреждений Российской Федерации, реализующих программы общего образования. (Приказ Минобразования России от 9 марта 2004г №1312)
Примерным региональным базисным учебным планом для общеобразовательных учреждений Приморского края на 2009-2010 учебный год (Приказ департамента образования и науки Приморского края от 29.05.2009г. №672а), письмом департамента образования и науки Приморского края от07 мая 2010г.№20-01-04/3039 «О применении примерного регионального базисного учебного плана в образовательных учреждениях Приморского края в 2010-2011 учебном году».
Учебным планом МОУ СОШ №30 г. Уссурийска на 2010-2011 учебный год. (Протокол педагогического совета №1 от 30.08.2010г)
Примерной программой общеобразовательных учреждений. Алгебра и начала математического анализа 10-11 кл./ Составитель: Т.А.Бурмистрова .- М.: Просвещение, 2009г.
Программы общеобразовательных учреждений .Геометрия 10-11 классы. Составитель Т.А.Бурмистрова Москва .Просвещение 2010
Для реализации программного содержания используется следующий учебно-методический комплекс:
Алимов Ш А, Колягин Ю М и др. Алгебра и начала анализа : Учебник для 10-11 кл. общеобразовательных учреждений ,Просвещение, 2007-2009.Л.С.
Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ – М.: Просвещение, 2007.
3 . Григорьева Г.И. . Поурочное планирование по алгебре и начала анализа 10 кл к учебнику Алимов Ш А, Колягин Ю М и др. Алгебра и начала анализа 10-11 Издательство «Учитель» 2008 г .Волгоград
4 . Ивлев Б.М.,Саакян С М . Дидактические материалы . Алгебра и начала анализа 10 кл . Просвещение 2002
В.А. Яровенко. Поурочные разработки по геометрии .10 класс Москва. «ВАКО» 2006
Цели обучения математике формирование у обучающихся гражданской ответственности и правового самосознания, духовности и культуры, самостоятельности, инициативности, способности к успешной социализации в обществе;
дифференциация обучения с широкими и гибкими возможностями построения старшеклассниками индивидуальных образовательных программ в соответствии с их способностями, склонностями и потребностями;
обеспечение обучающимся равных возможностей для их последующего профессионального образования и профессиональной деятельности, в том числе с учётом реальных потребностей рынка труда;
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне;
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математический идей.
Основные задачи
предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;
обеспечить уровневую дифференциацию в ходе обучения;
обеспечить базу математических знаний, достаточную для будущей профессиональной деятельности или последующего обучения в высшей школе;
сформировать устойчивый интерес учащихся к предмету;
развивать математические и творческие способности учащихся;
подготовить обучающихся к осознанному и ответственному выбору жизненного и профессионального пути;
расширить понятие множества чисел (от натурального до действительного);
изучить степенную, показательную, логарифмическую функции их свойства и графики;
овладеть основными способами решения показательных, логарифмических, иррациональных уравнений и неравенств;
познакомить учащихся с тригонометрической формой записи действительного числа и её свойствами;
рассмотреть преобразование тригонометрических выражений (включая решение уравнений) по формулам как алгебраическим, так и тригонометрическим.
Новизна: система упражнений позволяет организовать уровневую дифференциацию обучения по каждой теме; акцент в преподавании делается на практическое применение приобретённых навыков. Место предмета в федеральном базисном учебном плане
В федеральном компоненте базисного плана на изучение математики отведено 4 часа учебного времени в неделю. Учитывая социальный заказ учащихся, согласно требованиям Программы общеобразовательных учреждений, стандартов на изучение предмета из компонента часов образовательного учреждения добавлен 1 час. Всего-170 часов. (Алгебра и начала анализа-102 ч, геометрия- 68 ч)
Межпредметные и межкурсовые связи:
физика: «Действительные числа»,«Степенная функция», «Логарифмическая функция», «Логарифмические уравнения», «Показательные уравнения, . «Объемы многогранников»
химия – «Действительные числа»,
биология - « Действительные числа», «Показательная функция». Рассматриваемый курс математики для 10 класса организован вокруг основных содержательных линий:
- числовой (действительные числа, степень с действительным показателем, логарифмы чисел, тригонометрические числовые выражения);
- функциональной (показательной, логарифмической, степенная и тригонометрическая функции);
_ уравнений и неравенств (показательные, логарифмические, иррациональные, тригонометрические уравнения и неравенства);
_ преобразований (выражений, содержащих степени, логарифмы, тригонометрические функции).
Основные методические особенности курса заключается в следующем:
1.Элементарные функции изучаются элементарными методами (без использования производной).
2.Числовая линия и линия преобразований развиваются параллельно с функциональной, не опережая её по времени изучения. Так, например, изучению логарифмической функции предшествует изучение понятия логарифма числа и свойств логарифмов, преобразования логарифмических выражений, решение элементарных логарифмических уравнений.
3. При изложении курса широко используется графические средства наглядности.
4 Впервые вводится понятие равносильности уравнений и неравенств, поскольку в этом возникает необходимость.
5. Новые математические понятия, когда это возможно, вводятся после рассмотрения прикладных задач, мотивирующих необходимость их появления.
6.Система упражнений позволяет организовать уровневую дифференциацию по каждой теме.
7 Теоретический материал излагается доступным языком, что способствует самостоятельному изучению старшеклассниками.
8 Акцент в преподавание делается на практическое применение приобретённых знаний.
Основным в курсе 10 класса является изучение элементарных функций и связанное с ним решение уравнений и неравенств.
СОДЕРЖАНИЕ ОБУЧЕНИЯ 1. Действительные числа (11 часов)
Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.
О с но в н а я ц е л ь — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.
Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень. Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.
Действия над иррациональными числами строго не определяются а заменяются действиями над их приближенными значениями — рациональными числами.
В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности.
Арифметический корень натуральной степени n > 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.
Степень с иррациональным показателем поясняется на конкретном примере. Здесь же формулируются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.
Знать:
понятие натурального числа;
понятие целого числа;
понятие действительного числа;
понятие модуля числа;
понятие арифметического корня n –й степени и его свойства;
свойства степени с действительным показателем.
Уметь:
уметь находить сумму бесконечно убывающей геометрической прогрессии;
обращать бесконечно периодическую дробь в обыкновенную;
уметь выполнять преобразования выражений, содержащих арифметические корни.
2.Введение(5 часов), Параллельность прямых и плоскостей(20 часов) Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом. Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между прямыми в пространстве. Параллельность плоскостей, Тетраэдр и параллелепипед. Скрещивающиеся прямые
О с н о в н а я ц е л ь: познакомить с содержанием курса стереометрии, с основными аксиомами ,вывести первые следствия из аксиом. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Сформировать представление о случаях взаимного расположения двух прямых в пространстве, прямой и плоскости ,изучить свойства и признаки параллельности прямых и плоскостей
3. Степенная функция ( 10 ЧАСОВ)
Степенная функция, ее свойства и график. Взаимно обратные функции. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.
О с н о в н а я ц е л ь — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций с натуральным и целым показателями и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.
Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному числу; 4) числом, противоположным нечетному числу; 5) положительным нецелым числом; б) отрицательным нецелым числом (свойства функций в пп. 5 и 6 изучать необязательно).
Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем Рассмотрение равносильности уравнений, неравенств
и систем уравнений и свойств равносильности проводятся
в связи с предстоящим изучением иррациональных уравнений и неравенств.
Основным методом решения иррациональных уравнений является возведение обеих частей уравнений в степень с целью перехода к рациональному уравнению-следствию данного.
Иррациональные неравенства не являются обязательными для изучения всеми
учащимися. При их изучении основным способом решения является сведение неравенства к системе рациональных неравенств , равносильной данному неравенству.
Знать:
свойства степенной функции во всех её разновидностях;
определение и свойства взаимно обратных функций;
определения равносильных уравнений и уравнения-следствия;
понимать причину появления посторонних корней и потери корней;
что при возведении в натуральную степень обеих частей уравнения получается уравнение – следствие;
при решении неравенства можно выполнять только равносильные преобразования;
что следует избегать деления обеих частей уравнения(неравенства) на выражение с неизвестным.
Уметь:
∙ схематически строить график степенной функции в зависимости
от принадлежности показателя степени;
перечислять свойства;
выполнять преобразования уравнений, приводящие к уравнениям-следствиям;
решать иррациональные уравнения и неравенства.
4.Перпендикулярность прямых и плоскостей(19 часов)
Перпендикулярность прямых Перпендикулярность прямой и плоскости, признаки и свойства Перпендикуляр и наклонная. Угол между прямой и плоскостью Теорема о трех перпендикулярах. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.
О с н о в н а я ц е л ь :ввести понятие перпендикулярности прямых и плоскостей изучить признаки перпендикулярности прямой и плоскости ; двух плоскостей, ввести понятие :расстояние от точки до плоскости , между параллельными плоскостями, прямой и плоскостью ,скрещивающимися прямыми , угол между прямой и плоскостью
5.Показательная функция.( 12 ЧАСОВ )
Показательная функция ,её свойства и график . Показательные уравнения. . Показательные неравенства. Системы показательных уравнений и неравенств.
О с н о в н а я ц е л ь-изучить свойства показательной функции ,научить решать показательные уравнения и неравенства, простейшие системы показательных уравнений и неравенств..
Свойства показательной функции полностью следуют из свойств степени с действительным показателем Решение простейших показательных уравнений Решение большинства показательных уравнений и неравенств сводится к решению простейших. Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.
Знать:
определение и свойства показательной функции;
способы решения показательных уравнений.
Уметь:
уметь строить график показательной функции в зависимости от значения основания а;
описывать по графику свойства;() также задачи на известные учащимся зависимости между величинами
применять знания о свойствах показательной функции к решению прикладных задач;
решать уравнения, используя тождественные преобразования на основе свойств степени, с помощью разложения на множители выражений, содержащих степени, применяя способ замены неизвестной степени новым неизвестным;
решать показательные неравенства на основе свойств монотонности показательной функции;
решать системы показательных уравнений и неравенств.
Многогранники.(15 часов)
Понятие многогранника. Призма Пирамида Правильные многогранники
О с н о в н а я ц е л ь: познакомить учащихся с понятиями :вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Дать представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
8. Логарифмическая функция (16 ЧАСОВ)
Логарифмы. Свойства логарифмов. десятичные и натуральные логарифмы. логарифмическая функция, ее свойства и график. логарифмические уравнения. Логарифмические неравенства.
О с н о в н а я ц е л ь — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений изучить свойства логарифмической функции и научить применять ее свойства при решении простейших логарифмических уравнений и неравенств.
До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.
Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию е (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши 1g и ln, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить формулу перехода.
Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.
Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.
При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность .Поэтому при решении логарифмических уравнений необходима проверка найденных корней . .Поэтому при решении логарифмических неравенств нужно следить за тем ,чтобы равносильность не нарушалась ,так как проверку решения неравенства осуществить сложно,а в ряде случаев невозможно.
. Знать:
понятие логарифма числа и основное логарифмическое тождество;
основные свойства логарифмов;
понятие десятичного и натурального логарифмов;
определение логарифмической функции;
свойства логарифмической функции и её график.
Уметь:
применять свойства логарифмов для преобразований логарифмических
выражений;
применять формулу перехода от логарифма по одному основанию к логарифму по другому основанию;
применять свойства логарифмической функции при сравнении значений выражений и решении простейших логарифмических уравнений и неравенств;
решать различные логарифмические уравнения и их системы с использованием свойств логарифмов и общих методов решения уравнений;
решать логарифмические неравенства на основании свойств логарифмической функции.
9. Векторы в пространстве (7 часов)
Понятие вектора в пространстве Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
О с н о в н а я ц е л ь: закрепить известные из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарные векторы.. разложение по трем некомпланарным векторам.
5. Тригонометрические формулы (21 ЧАС )
Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом я тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов а и —а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.
О с н о в н а я ц е л ь - сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения siп х = а, соsх = а при а = 1, —1, 0.
Рассматривая определения синуса и косинуса действительного числа а, естественно решить самые простые уравнения, в которых требуется найти число а, если синус или косинус его известен, например уравнения siпа = 0, соs а = 1 и т. п. Поскольку для обозначения неизвестного по традиции используется буква х, то эти уравнения записывают как обычно: siпх = 0, соsх = 1 и т. п. Решения этих уравнений находятся с помощью единичной окружности.
Возможность выявления знаков синуса, косинуса и тангенса по четвертям является следствием симметрии точек единичной окружности относительно осей координат. Равенство сов(—а) = сова следует из симметрии точек, соответствующих числам а и —а, относительно оси Ох.
Зависимость между синусом, косинусом, тангенсом и котангенсом одного и того же числа или угла следует из тригонометрической формы записи действительного числа и определения синуса и косинуса как координаты точки единичной окружности.
Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия.
Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия формулы двойного и половинного углов (не являются обязательными для изучения), формулы приведения, преобразования суммы и разности в произведение.
Знать:
определения синуса, косинуса и тангенса;
основные формулы, выражающие зависимость между синусом, косинусом и
тангенсом
определение радиана;
понятие тождества как равенства;
Уметь:
переводить радианную меру угла в градусы и обратно;
поворачивать начальную точку единичной окружности вокруг начала координат на угол α и находить положение точки окружности, соответствующей данному действительному числу;
находить синус, косинус тангенс для чисел вида Π/2k, k €; Z
применять формулы для вычисления значений синуса, косинуса и тангенса числа по заданному значению одного из них;
доказывать тождества с использованием изученных формул;
выполнять преобразование тригонометрических выражений.
6. Тригонометрические уравнения (16 ЧАСОВ )
Уравнения соsх =а, siпх = а, tgх = а. Решение тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств.
О с н о в н а я ц е л ь — сформировать умение решать простейшие тригонометрические уравнения ознакомить с некоторыми приемами решения тригонометрических уравнений.
Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: сох = а, siпх = а, tgх = а.
Рассмотрение простейших уравнений начинается с уравнения сох = а, так как формула его корней проще, чем формула корней уравнения siпх = а Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.
Рассматриваются следующие типы тригонометрических уравнений линейные относительно siп х, соs х или tg х; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.
Знать:
понятия арккосинуса, арксинуса и арктангенса;
формулы корней простейших тригонометрических уравнений;
приёмы решений различных типов уравнений;
приемы решения простейших тригонометрических неравенств.
Уметь:
решать простейшие тригонометрические уравнения;
применять различные приёмы при решении тригонометрических уравнений;
решать простейшие тригонометрические неравенства.
Повторение и решение задач (2 ч-геометрия, 18ч-алгебра и начала анализа)
Требования к уровню подготовки учащихся:
Требования к результатам обучения направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, востребованными в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.
Рубрика «Знать/понимать» включает требования к учебному материалу, которые усваиваются и воспроизводятся учащимися.
Рубрика «Уметь» включает требования, основанные на более сложных видах деятельности, в том числе творческой: объяснять, изучать, распознавать и описывать, выявлять, сравнивать, определять, анализировать и оценивать, проводить самостоятельный поиск необходимой информации и т.д.
В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач. В результате изучения математики на базовом уровне ученик должен: знать/понимать:
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
Алгебра
Уметь:
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя
свойства функций и их графики;
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближённого решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
построение и исследование простейших математических моделей; Общеучебные умения и навыки
привычно готовить рабочее место для занятий ;
самостоятельно выполнять основные правила гигиены учебного труда режима дня;
понимать учебную задачу, поставленную учителем, и действовать строго в соответствии с ней;
работать в заданном темпе;
учиться пооперационному контролю учебной работы (своей и товарища), оценивать учебные действия (свои и товарища) по образцу оценки учителя;
уметь работать самостоятельно и вместе с товарищем;
оказывать необходимую помощь учителю на уроке;
самостоятельно обращаться к вопросам и заданиям учебника;
работать с материалами приложения учебника;
использовать образцы в процессе самостоятельной работы;
отвечать на вопросы по тексту;
учиться связно отвечать по плану. Геометрия
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Формы организации учебного процесса:
индивидуальные, групповые, индивидуально-групповые, фронтальные,
классные и внеклассные.
Формы контроля: самостоятельная работа, математический диктант, контрольная работа, зачёт
Контрольная работа по повторению
| Входной контроль
| Контрольная работа по теме
| « Действительные числа».
| Контрольная работа по теме
| Взаимное расположение прямых в пространстве
| Контрольная работа по теме
| Параллельность прямых и плоскостей
| Контрольная работа по теме
| « Степенная функция».
| Контрольная работа по теме
| Перпендикулярность прямых и плоскостей
| Контрольная работа по теме
| «Показательная функция».
| Контрольная работа по теме
| Многогранники
| Контрольная работа по теме
| « Логарифмическая функция».
| Контрольная работа по теме
| Векторы
| Контрольная работа по теме
| «Тригонометрические формулы».
| Контрольная работа по теме
| «Тригонометрические уравнения».
| Итоговая контрольная работа
|
|
| Контроль уровня обученности
При изучении курса проводится 2 вида контроля:
текущий – контроль в процессе изучения темы;
формы: устный опрос, контрольные работы, самостоятельные работы, тестирование, математические диктанты
итоговый – контроль в конце изучения зачетного раздела
формы: устные и письменные зачетные работы по отдельным темам.
Список литературы для учителя
1 Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров,Н.Е.Фёдоров, М,И.Шабунин. Москва. Просвещение, 2010.
2.Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ – М.: Просвещение, 2009.
3.Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 11 кл. – М.: Просвещение, 2006.
4. Научно-теоретический и методический журнал «Математика в школе»
5.Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
6.Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. – Волгоград: Учитель, 2006.
7.Единый государственный экзамен 2006-2009. математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.: Интеллект-Центр, 2005-2012.
Список литературы для учащихся
Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ – М.: Просвещение, 2009.
2. Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров,Н.Е.Фёдоров, Алгебра и начала анализа 10-11, Москва. Просвещение, 2010.
3. Дидактический материал для 10-11 классов. Алгебра и начала анализа М,И,Шабунин,М,В,Ткачева, Н,Е,Федорова, Р,Г,Газаврян
Москва. Мнемозина,1998.
4. Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 11 кл. – М.: Просвещение, 2006.
3. Единый государственный экзамен 2006-2009. математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.: Интеллект-Центр, 2005-2012. |
|
|