Главная страница

Решение уравнений, содержащих переменную под знаком модуля 9 класс с углубленным изучением математики



Скачать 47.15 Kb.
НазваниеРешение уравнений, содержащих переменную под знаком модуля 9 класс с углубленным изучением математики
Дата05.03.2016
Размер47.15 Kb.
ТипУрок

Решение уравнений, содержащих переменную под знаком модуля

9 класс с углубленным изучением математики

Тип урока: получение новых знаний (Мозговой штурм)
Современные условия требуют от учащихся профильных и углублённых классов прочных методов решения. Но не менее важно и умение применять полученные знания в нестандартной ситуации, на практике, а также способность творчески подходить к решению каждой задачи, генерировать идеи по её решению.

Большое значение в развитии такого «творческого» стиля мышления имеют уроки в форме учебно-мозгового штурма (УМШ). На таких уроках ученики не действуют по указанному учителем алгоритму, а учатся в ходе работы в творческих парах «открывать» свои алгоритмы, сравнивать их, критиковать, находить преимущества, корректировать, обобщать.

Я хочу вам представить урок получения новых знаний, проведённый в 9 классе с углублённым изучением математики. Урок проводился в форме учебно-мозгового штурма в комбинации с работой в парах.

Тема урока «Решение уравнений, содержащих переменную под знаком модуля». На предшествующих уроках повторилось понятие модуля, свойства модуля, его геометрический смысл, а также вырабатывались навыки в упрощении выражений, содержащих модуль.

Учащиеся работали в парах. У каждой пары имелся лист со списком предлагаемых уравнений и лист с ответами на все уравнения. А каждому ученику была предложена таблица, с которой они работали в течение урока.

На доске изображена аналогичная таблица, которая также заполнялась на протяжении всего урока и по которой учащиеся проверяли правильность заполнения своих индивидуальных таблиц.

Содержание урока

Организационный момент

- Учащимся сообщается форма урока (УМШ) и для создания творческой обстановки приводятся в качестве эпиграфа слова В. Гюго (Слайд 1).

- Формируются творческие пары.

- Записывается в тетрадях тема урока (Слайд 2)

Актуализация знаний

- Сообщается цель урока (Слайд 3)

- Сообщаются 3 ключа (Слайд 4)

Устная работа

На доске записано определение модуля (формула) и геометрическое толкование (рисунок)

- Дайте алгебраическое определение модуля (словесное)

- В чём состоит геометрическая интерпретация модуля?

- Решите устно (Слайд 6)
Этапы УМШ

1) Выделение групп однотипных уравнений; формулировка отличительных признаков

Работая в парах, необходимо выделить группы уравнений, объединённых какой-то особенностью.

Некоторые уравнения «отправляются» в группу «Тёмная лошадка».

Учащиеся используют имеющиеся на столах листы с уравнениями, классифицируя их по 5 основным видам, и вписывают в 3-ю колонку таблицы.

Учитель наблюдает за работой пар, затем вызываются к доске по 1 представителю от разных пар и им предлагается заполнить 3-ю колонку таблицы на доске.

Затем результат обсуждается и корректируется, если это необходимо.

Далее для каждого вида уравнений формулируется отличительный признак и учителем предлагается наиболее «типовое» уравнение, которое и будет решаться.

2) Генерирование идей о методе решения уравнений отдельных групп

УМШ идёт по следующему алгоритму:

  1. Выбор одного типа уравнений

  2. 5-минутный мозговой штурм в парах ( при этом уравнения не решаются до конца, а только генерируются «идеи» решения)

  3. Выдвижение и обсуждение идей

  4. «Реализация» идеи – решение у доски (возможно, представителями разных пар, если идеи отличаются), запись решений в тетрадях.

  5. Анализ решений и коррекция.

На этом этапе УМШ учителю нужно не торопить учащихся, не отвергать ни одной идеи, не навязывать им свои методы, а лишь подсказывать направления поиска, поддерживать атмосферу «изобретательства». При этом каждый «шаг» на пути поиска поощряется, а ошибки – анализируются, но не наказываются.

Незадолго до конца занятия, вне зависимости от количества рассмотренных типов уравнений, необходимо перейти к 3 этапу УМШ.

3) Анализ идей, коррекция, выводы

Формулируются полученные методы решения (только для рассмотренных типов).

Решения в общем виде записываются во 2 колонку таблицы, причём таблицу на доске заполняет учитель.

4) Домашний

Формулировка домашнего задания.

Обязательная часть: решить остальные уравнения из рассмотренных типов.

Необязательная часть: предложить идеи решения уравнений из нерассмотренных типов, а также уравнений из группы «Тёмная лошадка».

Учитель объявляет, что на следующем уроке работа по «изобретению» методов решения уравнений будет продолжена и закреплена.

Заключительная часть урока

На этом этапе необходимо коротко проанализировать работу каждой пары:

- активность;

- слаженность;

- корректность;

- умение преподносить свои идеи и принимать чужие.

Обязательно нужно отметить лучших «генераторов» идей.

На уроках УМШ нет необходимости ставить оценки, ведь оценить творчество по 5-тибалльной системе очень трудно.

Уравнения, содержащие переменную под знаком модуля



1) |х - 3| = 5


11) |х - 1|

= х

|х - 2|

2) |3 + у| - |у - 2| = 5

12) |3 - |2 - |1 - х||| = 2


3) х |13 - х| - 22 = 0

  1. х|х| + 7х + 12 = 0




4) |у - 4| + |у - 6| = 8

14) |х2 + 3х - 4| - 6 = 0


5) х2 - 4|х| - 1 = 0


15) 3|х - 1| - 2|х - 2| + |х - 3|

= 2

6) |х + 2| = 2|3 - х|


16) х2 - 2х = |х2 - 3х|

7) |х| + |х - 4| + |х - 5| = 12


17) |х3 + 4| + 1 = 0


|3 - х|

8) = 1

|х - 1|

18) |||| х | - 2| - 1| - 2| = 2


х3

9) - 7х + 12 = 0

|х|


19) √х – 2 + |х - 3| = |х - 4|

10) |х3 + 3х2 + х| = -х + х3


20) |х2 – х - 2| = |2х2 – х - 1|



Уравнения, содержащие переменную под знаком модуля



Общий вид уравнений

Решение

Примеры

1) |f(x)|=a, где а≥0







2) f(|x|)=a







3) |f(x)|=g(x)







4) |f(x)|=|g(x)|







5) |f1(x)|+|f2(x)|+…

+|fn(x)| = g(x)







«Тёмная лошадка»