Главная страница

Разработки уроков по математике, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) Урок 1 Цели



НазваниеРазработки уроков по математике, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) Урок 1 Цели
страница4/14
Дата27.02.2016
Размер2.43 Mb.
ТипУрок
1   2   3   4   5   6   7   8   9   ...   14
1. /razrabotki_urokov__6_klass.docxРазработки уроков по математике, 6 класс (Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд) Урок 1 Цели

III. Итог урока:

1. Повторить правила сложения и вычитания смешанных чисел.

2. Решить на доске вместе с учениками:

а)

б) Доску разрезали на три части. Длина первой части м. Она короче второй части на м и длиннее третьей части на  м. Найти длину всей доски.

Домашнее задание: решить № 416 (а), № 422 (а), № 424.

КОНТРОЛЬНАЯ РАБОТА № 3

Цели: выявить степень усвоения учащимися изученного материала; развивать навыки самостоятельной работы.

Ход урока

I. Организация учащихся на выполнение работы.

II. Выполнение работы по вариантам.

Вариант I.

1. Найдите значение выражения:

2. На автомашину положили сначала т груза, а потом на т больше. Сколько всего тонн груза положили на автомашину?

3. Ученик рассчитывал за ч приготовить уроки и за ч закончить модель корабля. Однако на всю работу он потратил на  ч меньше, чем предполагал. Сколько времени потратил ученик на всю работу?

4. Решите уравнение

5. Разложите число 90 на два взаимно простых множителя четырьмя различными способами (разложения, отличающиеся только порядком множителей, считать за один способ).
Вариант II.

1. Найдите значение выражения:

2. С одного опытного участка собрали т пшеницы, а с другого – на т меньше. Сколько тонн пшеницы собрали с этих двух участков?

3. Ученица рассчитывала за ч приготовить уроки и ч потратить на уборку квартиры. Однако на все это у нее ушло на  ч больше. Сколько времени потратила ученица на всю эту работу?

4. Решите уравнение

5. Разложите число 84 на два взаимно простых множителя четырьмя различными способами (разложения, отличающиеся только порядком множителей, считать за один способ).
Вариант III.

1. Найдите значение выражения:

2. Масса одной детали кг, что меньше массы другой детали на кг. Какова масса двух деталей вместе?

3. Садовник рассчитывал за ч приготовить раствор и за  ч опрыснуть этим раствором деревья. Однако на всю работу он потратил на  ч меньше, чем рассчитывал. Сколько времени ушло у садовника на всю эту работу?

4. Решите уравнение:

5. Разложите число 60 на два взаимно простых множителя четырьмя различными способами (разложения, отличающиеся только порядком множителей, считать за один способ).
Вариант IV.

1. Найдите значение выражения:

2. Масса одного станка т, а другого – на т меньше. Найдите общую массу обоих станков.

3. Хозяйка рассчитывала за ч приготовить обед и  ч потратить на стирку белья. Однако на всю работу у нее ушло на  ч больше. Сколько времени хозяйка потратила на всю эту работу?

4. Решите уравнение:

5. Разложите число 126 на два взаимно простых множителя четырьмя различными способами (разложения, отличающиеся только порядком множителей, считать за один способ).

Домашнее задание: повторить «Основное свойство дроби» (п. 8) и «Сокращение дробей» (п. 9).

УМНОЖЕНИЕ ДРОБЕЙ

Урок 1

Цели: вывести правило умножения дроби на натуральное число и правило умножения дроби на дробь; повторить основное свойство дроби и закрепить его знание при сокращении дробей.

Ход урока

I. Анализ контрольной работы.

1. Сообщение результатов контрольной работы.

2. Указать ошибки, сделанные учащимися в ходе работы.

3. Решить задания, вызвавшие затруднения у учащихся.

II. Объяснение нового материала.

1. Повторить основное свойство дроби.

2. Разобрать по учебнику решение задачи 1 на странице 68. Сформулировать правило умножения дроби на натуральное число.

3. Решить устно № 427 (а; д; е; ж; з).

4. Разобрать решение задачи 2 на странице 69 учебника, используя рисунок 19 на странице 69. Сформулировать правило умножения дроби на дробь.

5. Решить устно № 433 (а; б; г; д; ж).

III. Закрепление изученного материала.

1. Решить № 427 (б; в; г) с комментированием на месте.

2. Решить задачу № 428 на доске и в тетрадях.

Решение.

Р = 4а; а = м; р = (м).

Ответ: 3,5 м.

3. Решить № 431 на доске и в тетрадях. (Четыре человека решают на доске, остальные – в тетрадях, а затем проверяется решение.)

4. Решить № 433 (в; е; з; и; k; л; н) с комментированием
на месте.

5. Решить задачу № 434 самостоятельно, повторив формулу площади квадрата:

6. Решить задачу № 421 самостоятельно, вспомнив формулу объема куба:

7. Решить № 441 и № 442 на доске и в тетрадях; № 439 решить самостоятельно.

8. Решить № 435 (а; б) самостоятельно, с проверкой.

Решение.

IV. Повторение изученного материала.

1) Решить № 467. Вспомнить, что называется процентом:

1% = =0,01.

2) Решить уравнение № 470. Двое учащихся самостоятельно решают на доске, остальные – в тетрадях, а потом проверяют решение.

Решение.

V. Итоги урока:

1) выучить правила пункта 13 (1; 2);

2) прочитать по учебнику раздел «Говори правильно» на странице 71;

3) решить № 427 (в; г).

Домашнее задание: выучить правила п. 13 (1; 2); решить № 472 (ж; з; а; б), № 474, № 478 (а; б), № 479.

Урок 2

Цели: закрепить правило умножения дробей и умножения дроби на натуральное число; изучить правило умножения смешанных чисел и научить применять его при решении задач; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

1. Решить № 455 (а; б; в; г).

2. Решить № 457.

3. Повторить правила умножения дроби на натуральное число и правило умножения дробей, правило сокращения дробей.

4. Вычислить устно:

5. Повторить правило представления смешанного числа в виде неправильной дроби. Привести примеры.

II. Изучение нового материала.

1. Разобрать по учебнику решение задачи 3 на с. 69–70. Сформулировать правило умножения смешанных чисел.

2. Устно выполнить умножение:

III. Закрепление изученного материала.

1. решить № 433 (м; п; о) на доске и в тетрадях.

2. Решить задачу № 429 (второе значение решаем вместе, 1-е и 3-е решаются с комментированием на месте).

3. Решить № 446 (б; д; в) на доске и в тетрадях; № 446 (а; г; е) решаются комментированием на месте.

4. Решить задачу № 450.

Решение.

(км/ч) скорость второго велосипедиста.

будет расстояние между велосипедистами через ч.

Ответ: 3,06 км.

5. решить задачу № 452. Сначала в ходе обсуждения разобрать решение этой задачи, а затем учащиеся решают самостоятельно.

Решение.

(ч) заливали каток вторым шлангом.


3) воды израсходовали на заливку катка.

Ответ: м3.

6. Повторение ранее изученного материала:

а) решить № 461 (а; г; ж) (три человека решают на доске, остальные – в тетрадях);

б) решить задачу № 469 (1).

Решение.

Объем всей работы примем за единицу.

всей работы выполнят рабочие за два дня.

(части) работы выполнили в третий день.

Ответ: части.

IV. Итог урока.

1. Расскажите, как умножить дробь на натуральное число. Привести свои примеры.

2. Расскажите, как выполнить умножение двух дробей и как выполнить умножение смешанных чисел. Привести свои примеры.

3. Вычислите квадрат и куб числа:

а)

Домашнее задание: выучить правила п. 13; решить № 472 (в; и; k; л), № 473 (а), № 476, № 478 (в), № 482 (а).

Урок 3

Цели: способствовать выработке навыков и умений при умножении дробей; изучить свойства умножения дробей, свойства нуля и единицы при умножении; развивать логическое мышление учащихся.

Ход урока

I. Проверка изученного материала.

1. Двое учащихся работают на доске, выполняя номера из домашнего задания:

а) № 476; б) № 478.

2. С остальными учащимися проводится устная работа:

При данных значениях в 4; 100; 2; 6; сравните:

1) в и в · 2) в и в · 1

Увеличится или уменьшится число, если его умножить на дробь:

1) меньшую единицы; 2) большую единицы?

3. Какой смысл имеет слово «умножение» в русском языке? Сохраняется ли смысл этого слова, когда мы говорим об умножении дробных чисел?

4. Решить № 459 (по рис. 20 учебника).

II. Работа по учебнику.

1. Разобрать решение задачи 4 на странице 70.

2. Умножение дробей обладает переместительным и сочетательным свойствами:

1) а · в = в · а; 2) (а · в) · с = а · (в · с).

3. Вычислите устно, применяя законы умножения:

4. Для любого значения а:

а · 0 = 0 · а = 0; а · 1 = 1 · а = а.

Например,

5. Устно решить № 446 (н; о; п).

III. Выполнение упражнений.

1. Решить задачи № 436, 437, 432 самостоятельно, с последующей проверкой.

2. Решить задачу № 430 на доске и в тетрадях.

Решение.

(м) сторона ВС;

(м) сторона АС;

(м) периметр треугольника АВС.

Ответ: м.

3. Решить № 446 (ж; з; и; к; л; м) с комментированием на месте.

4. Решить задачу № 448, повторив сокращение дробей.

Решение.

V = a в c; V = (дм3) объем.

Ответ: 3,5 дм3.

5. Решить задачу № 447 (а; б) самостоятельно.

6. Решить № 454 (а; б). Двое учащихся решают самостоятельно на доске, остальные учащиеся – в тетрадях, а затем решение проверяется.

IV. Самостоятельная работа (10–12 мин).

Вариант I.

1. Выполните умножение: г)

2. Найти объем прямоугольного параллелепипеда, если его измерения равны дм, дм и дм.

3. Найти значение выражения:

Вариант II.

1. Выполните умножение: г)

2. Найти объем прямоугольного параллелепипеда, если его измерения равны м, м, м.

3. Найти значение выражения:

Домашнее задание: повторить правила п. 13; решить № 472 (м; н; о; п), № 473 (б), № 477, № 482 (б).

Урок 4

Цели: закрепление изученного материала; развитие навыков и умений учащихся при умножении дробей, сложении и вычитании дробей, решении задач.

Ход урока

I. Анализ самостоятельной работы.

1. Указать ошибки, сделанные учащимися при выполнении работы.

2. Решить задания, вызвавшие затруднения у учащихся.

II. Выполнение упражнений.

1. Решить № 442 и № 438 самостоятельно, с проверкой.

2. Решить задачу № 443 самостоятельно.

3. Известно, что некоторое число с больше 1. Сравните с2 и с3.

4. Известно, что некоторое число в меньше 1. Сравните в2 и в3.

5. Вычислите (на доске и в тетрадях):

6. Решить задачу № 451 на доске и в тетрадях.

Решение.

(км/ч) скорость Веры.

(км/ч) скорость сближения девочек.

(км) расстояние между селами.

Ответ: 10 км.

7. Решить задачу № 453 на доске и в тетрадях.

Решение.

(га) площадь второго поля.

(ц) пшеницы собрали с первого поля.

(ц) пшеницы собрали со второго поля.

(ц) пшеницы собрали с двух полей.

Ответ: 4370 ц.

8. Самостоятельно решить задачу № 449.

9. Решить задачу.

Скорость слабого ветра м/с, умеренного – в 2 раза больше, скорость сильного ветра в раза больше скорости слабого и умеренного ветров вместе. Определите скорость сильного ветра.

III. Повторение материала.

Провести самостоятельную работу по вариантам, используя задания учебника.

Вариант I. Вариант II.

1) Решить № 431 (в; г). 1) Решить № 431 (д; е).

2) Решить № 440 (г). 2) Решить № 440 (в).

3) Решить № 447 (д). 3) Решить № 447 (е).

4) Решить задачу № 454 (2). 4. Решить задачу № 454 (1).

Домашнее задание: решить № 478 (г; ж; з), № 481, № 483, № 471.

ИТОГОВЫЙ УРОК
ПО МАТЕРИАЛУ I ЧЕТВЕРТИ
(1 час)

Цели: подвести итоги работы I четверти, решить занимательные задачи.

Ход урока

I. Анализ и результаты самостоятельной работы.

II. Подведение итогов работы в I четверти.

III. Итоги работы математического кружка.

1. Сообщение результатов работы математического кружка.

2. Решить несколько занимательных задач:

1) Как проще всего вычислить сумму:

Указание. Каждую из дробей представить в виде разности:

2) Как быстро найти сумму чисел от 1 до 100?

Решение.

(1 + 100) + (2 + 99) + (3 + 98) + (4 + 97) + … + (50 + 51) = 101 + + 101 + 101 + … + 101 = 101 · 50 = 5050.

Ответ: 5050.

3) В записи 88888888 = 1000 поставьте между некоторыми цифрами знак сложения так, чтобы получилось верное равенство.

Решение.

888 + 88 + 8 + 8 + 8 = 1000.

4) Какую долю составляют сутки от года?

Ответ: или .

5) Замените звездочки цифрами:

Ответ:

6) Решить № 460. Кто быстрее?

Домашнее задание: подобрать интересные задачи для математического кружка.

НАХОЖДЕНИЕ ДРОБИ ОТ ЧИСЛА

Урок 1

Цели: познакомить с задачами на нахождение дроби от числа и решением их с помощью умножения; сформулировать правило нахождения дроби от числа.

Ход урока

I. Устные упражнения.

1. Решить устно № 508 (а; б) и № 510 (а).

2. Подготовить учащихся к восприятию нового материала, решив задачи:

а) Маша нашла в лесу 20 грибов, из них грибов были белыми. Сколько белых грибов нашла Маша?

Решение.

– Задачи этого типа мы решали в 5 классе.

20 : 5 · 2 = 4 · 2 = 8 (белых) грибов.

б) Мама дала Коле 12 конфет; Коля съел этих конфет. Сколько конфет осталось у Коли?

1) 12 : 4 · 3 = 9 (конфет) съел Коля.

2) 12 – 9 = 3 (конфеты) осталось у Коли.

Ответ: 3 конфеты.

II. Изучение нового материала.

1. Разобрать по учебнику на странице 78 решение задачи 1 и ввести оформление задачи:

(км).

2. Используя рисунок 21 на странице 79 учебника, разобрать решение задачи 2 и записать в тетрадях решение:

(всего участка).

3. Такие задачи называют задачами на нахождение дроби от числа и решают их с помощью умножения.

4. Формулировка и запись в тетрадях правила нахождения дроби от числа.

III. Закрепление изученного материала.

1. Решить устно № 484 по рисунку 22 учебника.

2. Решить устно № 485 по рисунку 23 учебника.

3. Решить № 486 (а; г) на доске и в тетрадях.

4. Решить № 486 (б; в) с комментированием на месте.

5. Решить задачу № 490 на доске и в тетрадях.

Решение.

2) площадь второй комнаты.

2) 21 + 9 = 30 (м2) площадь двух комнат.

Ответ: 30 м2.

6. Решить задачу № 500 (объясняет учитель).

Решение.

(части) книги осталось прочитать после первого дня.

(часть) книги прочитала Ира во второй день.

(часть) книги прочитана за два дня.

Ответ: часть; часть.

7. Решить задачу № 505 самостоятельно, предварительно разобрав решение вместе с классом.

Решение.

1) 39 – 7 = 32 (дня) затрачено на ремонт комбайнов.

(дней) затрачено на ремонт прицепного инвентаря.

3) 39 – 14 = 25 (дней) больше длился ремонт тракторов, чем ремонт прицепного инвентаря.

Ответ: на 25 дней больше.

8. Повторение изученного материала: решить с комментированием на месте № 513 (а; г; ж; з).

IV. Итоги урока: повторить правило нахождения числа по его дроби.

Домашнее задание: изучить пункт, выучить правило п. 14 (1 часть); решить № 523, № 533, № 534 (а). Индивидуальное задание № 535 (а).

Урок 2

Цели: разобрать решение еще двух задач на нахождение дроби от числа; способствовать развитию навыков решения задач и упражнений; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

1. Двое учащихся решают на доске домашнее задание № 523 и № 533.

2. С остальными учащимися решить № 508 (в) и № 510 (б) устно.

3. Решить № 509, используя для решения черновики.

II. Работа по учебнику.

Разобрать по учебнику решение еще двух задач на нахождение дроби от числа на странице 79 (пункт 14).

1. Задача 3. Путешественник прошел за два дня 20 км. В первый день он прошел 0,6 всего пути. Сколько километров прошел путешественник в первый день?

Решение.

20 · 0,6 = 12 (км) прошел в первый день.

2. Задача 4. Огород занимает 8 га. 45% площади этого огорода занято картофелем. Сколько гектаров занято картофелем?

Решение.

45% = 0,45;

1) 8 · 0,45 = 3,6 (га) занято картофелем.

III. Закрепление изученного материала.

1. Решить задачи № 487, № 486 и № 488 на доске и в тетрадях и сравнить ответы.

Сделать вывод, что так как и 80% = 0,8, то ответы при решении этих задач одинаковые.

2. Решить № 485 (д, з, л) на доске и в тетрадях.

Решение.

д) 0,4 от 30; 30 · 0,4 = 12;

з) 4,2 · 0,7 = 2,94;

л) 42% = 0,42;

3. Решить № 485 (ж; k) с комментированием на месте.

Решение.

ж) 0,8 · 0,2 = 0,16; k) 12,6 · 0,35 = 4,41.

4. Решить задачу № 476 самостоятельно, с последующей проверкой.

Решение.

1) 90 · 0,3 = 27 (марок) у брата.

2) 90 – 27 = 63 (марки) у сестры.

Ответ: 63 марки.

5. Решить задачу № 494 на доске и в тетрадях.

Решение.

1) 75% =0,75; 102,8 · 0,75 = 77,1 (км) построено

2) 102,8 – 77,1 = 25,7 (км) осталось построить.

Ответ: 25,7 км.

6. Решить задачу: Плоды ананаса содержат 84% воды. Остальное – сахар и другие питательные вещества. Сахар составляет 25% массы остатка. Сколько сахара содержится в 175 кг плодов ананаса?

Решение.

84% =0,84; 25% = 0,25 = .

1) 175 · 0,84 = 147 (кг) содержится воды.

2) 175 – 147 = 28 (кг) остаток.

3) 28 · = 7 (кг) содержится сахара.

Ответ: 7 кг.

7. Повторение материала: а) решить № 513 (б; д; и);

б) повторив нахождение объема прямоугольного параллелепипеда V = авc, решить задачу № 519.

Решение.

1) 1,1 · 1,1 = 1,21 (дм2) площадь основания.

2) 2,42 : 1,21 = 2 (дм) высота параллелепипеда.

Ответ: 2 дм.

IV. Итог урока.

1. Сформулируйте правило нахождения дроби от числа.

2. Расскажите, как найти несколько процентов от числа.

Домашнее задание: изучить п. 14; решить № 524, 526, 534 (б); индивидуальное задание: № 535 (б).

Урок 3

Цели: закрепить знание правил действий с десятичными дробями в ходе выполнения упражнений; вырабатывать навыки решения задач на нахождение дроби от числа.

Ход урока

I. Повторение изученного материала.

1. Решить устно № 507 (а; б; в) и № 511.

2. Сформулировать правила нахождения дроби от числа и решить задачи устно:

а) На ветке сидело 12 птиц, их числа улетело. Сколько птиц улетело?

б) В тетради 24 страницы. Записи занимают числа всех страниц тетради. Сколько в тетради чистых страниц?

в) Опыляя растения, вертолет совершает каждый круг в среднем за ч. Сколько минут длится каждый круг вертолета?

II. Выполнение упражнений.

1. Решить № 485 (е; и; м) на доске и в тетрадях.

Решение.

е) 40 · 0,55 = 22; и) 50 · 0,3 = 15;

м)

2. Решить задачу: У мальчика было 240 р. Он потратил этой суммы и остатка. Сколько денег он потратил?

Решение.

1) (р.) потратил сначала.

2) 240 – 60 = 180 (р.) осталось.

3) (р.) еще потратил.

4) 60 + 90 = 150 (р.) всего потратил.

Ответ: 150 р.

3. Решить задачу № 492 с комментированием на месте.

Решение.

1) 86,5 · 0,2 = 17,3 (кг) масса одного ягненка.

2) 86,5 + 17,3 · 6 = 190, 3 (кг) масса овцы с шестью ягнятами.

Ответ: 190,3 кг.

4. Решить задачу № 481 самостоятельно.

5. Решить задачу № 483 на доске и в тетрадях.

Решение.

120% = 1,2

1) 45 · 1,2 = 54 (детали) изготовил рабочий.

Ответ: 54 детали.

6. Решить задачу № 505.

Решение.

Месячная норма составляет 100%.

1) 30% · 0,8 = 24% было выполнено во вторую неделю.

2) 24% · было выполнено в третью неделю.

3) 100% – (30% + 24% + 16%) = 100% – 70% = 30% месячный нормы осталось выполнить бригаде в четвертую неделю.

Ответ: 30%.

7. Повторение ранее изученного материала:

а) решить № 513 (в; е; k) самостоятельно;

б) решить задачу № 518 с комментированием на месте.

Решение.

1) 40 · (км/ч) скорость скворца.

2) 48 · (км/ч) скорость голубя.

Ответ: 56 км/ч.
1   2   3   4   5   6   7   8   9   ...   14