|
Рабочая программа по математике для 5 класса Составитель: Сеитова Лариса Ромазановна, учитель первой квалификационной категории Рассмотрено на заседании Согласовано зам. директора Утверждаю: приказ №
лицейского методического по учебно-воспитательной работе « »________20 г.
объединения учителей ________________________ Директор ______ / З.М.Чомаева/
« »________20 г.
Составлена на основе ФГОС основного общего образования
Рабочая программа
по математике для 5 класса
Составитель: Сеитова Лариса Ромазановна,
учитель первой квалификационной категории.
Муниципальное казенное образовательное учреждение «Лицей №7 г.Усть-Джегуты»
2012-2013 учебный год
Пояснительная записка
к рабочей программе по математике. 5 класс. Данная рабочая программа по математике для 5 класса разработана на основе Примерной программы основного общего образования, с учетом требований федерального компонента государственного стандарта основного общего образования с использованием рекомендаций авторской программы Н.Я Виленкина. Рабочая программа рассчитана на 170 часов, 5 часов в неделю, 34 учебных недель.
Цели:
формирование представлений о математике как универсальном языке;
развитие логического мышления, пространственного воображения, алгоритмической культуры;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;
воспитание средствами математики культуры личности;
понимание значимости математики для научно-технического прогресса;
отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития.
Задачи:
сохранить теоретические и методические подходы, оправдавшие себя в практике преподавания в начальной школе;
предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;
обеспечить уровневую дифференциацию в ходе обучения;
обеспечить базу математических знаний, достаточную для изучения алгебры и геометрии, а также для продолжения образования;
сформировать устойчивый интерес учащихся к предмету;
выявить и развить математические и творческие способности;
развивать навыки вычислений с натуральными числами;
учить выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями, действия с десятичными дробями;
дать начальные представления об использование букв для записи выражений и свойств;
учить составлять по условию текстовой задачи, несложные линейные уравнения;
продолжить знакомство с геометрическими понятиями;
развивать навыки построения геометрических фигур и измерения геометрических величин.
В течение года планируется провести 12 контрольных работ. запланировано 6 самостоятельных работы и 8 тестов по стержневым темам курса математики 5 класса.
В рабочей программе предусмотрено 12 контрольных работ по темам:
«Натуральные числа и шкалы»,
«Сложение и вычитание натуральных чисел»,
«Уравнение»,
«Умножение и деление натуральных чисел»,
«Упрощение выражений. Степень числа»,
«Площади и объемы»,
«Обыкновенные дроби»,
«Сложение и вычитание обыкновенных дробей»,
«Сложение и вычитание десятичных дробей»,
«Умножение и деление десятичных дробей на натуральные числа»,
«Умножение и деление десятичных дробей»,
«Проценты»,
«Инструменты для измерений»,
«Итоговое повторение».
Промежуточная аттестация осуществляется в соответствии суставом школы.
Содержание курса математики 5 класса включает в себя следующие блоки:
Натуральные числа и шкалы.
Сложение и вычитание натуральных чисел.
Умножение и деление натуральных чисел.
Площади и объемы.
Обыкновенные дроби.
Десятичные дроби. Сложение и вычитание десятичных дробей.
Умножение и деление десятичных дробей.
Инструменты для вычислений и измерений.
Повторение.
№
п\п
| Содержание образования
| № пункта в учеб-нике
| Количество часов с учетом числа к\р
| Обязательные результаты обучения (стандарт)
| Прим.
| 1
| Натуральные числа и шкалы
| 1 - 5
| 17 часов
| Знать: понятие «натуральное число», разряды и классы чисел, понятия отрезок, концы отрезка, многоугольник, треугольник, вершины и стороны многоугольника и треугольника, единицы измерения длины, понятия плоскости, прямой, луча и их свойства, понятия шкалы и координатного луча, их элементов, координата, единицы массы, понятия больше и меньше, неравенство, двойное неравенство, знаки неравенства
Уметь: читать натуральные числа, разбивать числа по классам, выполнять устно и письменно арифметические действия с натуральными числами, чертить отрезки заданной длины, измерять отрезки, сравнивать длины отрезков, переводить одни единицы измерения длины в другие, строить прямые, лучи, работать со шкалой, изображать координатный луч, определять координаты точек по координатному лучу, изображать точки с заданными координатами, переводить одни единицы массы в другие, сравнивать натуральные числа, записывать результат сравнения в виде неравенства
|
| 2
| Сложение и вычитание натуральных чисел
| 6 - 10
| 25 часов
| Знать: понятия слагаемое, сумма, периметр, свойства сложения, понятия уменьшаемое, вычитаемое, разность вычитание; свойства вычитания, понятия числового и буквенного выражения, понятия уравнение, корень уравнения, решить уравнение
Уметь: изображать сложение на координатном луче, применять свойства сложения при вычислениях, находить периметр многоугольника, изображать вычитание на координатном луче, применять свойства вычитания при вычислениях, записывать и читать буквенные выражения, составлять числовое или буквенное выражение по условию задач, находить значения числового выражения и буквенного выражения при заданных значениях букв, находить неизвестные компоненты уравнения (слагаемое, вычитаемое, уменьшаемое), решать задачи алгебраическим способом
|
| 3
| Умножение и деление натуральных чисел
| 11 – 16
| 29 часов
| Знать: понятие умножения чисел и его компоненты, свойства умножения натуральных чисел, понятие деление и его элементы, свойства деления, понятие деления с остатком и его элементов, правило нахождения делимого по неполному частному, делителю и остатку, распределительное свойство умножения относительно сложения и вычитания, сочетательное свойство умножения, действия первой и второй ступени, понятия степень числа, квадрат и куб числа, действия третей ступени
Уметь: умножать натуральные числа, использовать в вычислениях свойства умножения, решать текстовые задачи на умножение, делить натуральные числа, решать текстовые задачи на деление, читать и записывать выражения, содержащие действие деления, находить неизвестные множитель, делимое и делитель, решать задачи алгебраическим способом, выполнять деление с остатком, использовать правило нахождения делимого по неполному частному, делителю и остатку, решать задачи на деление с остатком, применять распределительное и сочетательное свойства умножения к упрощению выражений, решать уравнения и задачи алгебраическим способом, составлять и работать по программе и схеме выполнения действий, решать текстовые, возводить в степень, вычислять квадрат и куб числа
|
| 4
| Площади и объемы
| 17 – 20
| 12 часов
| Знать: понятие формулы, формулы пути, периметра прямоугольника и квадрата, единицы измерения площади, понятие объема, формулы объема прямоугольного параллелепипеда и куба
Уметь: использовать формулы при решении задач, определять единицы измерения площади, решать задачи на нахождение объема прямоугольного параллелепипеда и куба
|
| 5
| Обыкновенные дроби
| 22 – 29
| 23 часа
| Знать: понятия окружности и ее элементов, круга, понятие обыкновенной дроби и ее элементов, способы решения задач на дроби, правило сравнение дробей с одинаковыми знаменателями, понятие правильной и неправильной дроби
Уметь: строить окружность заданного радиуса, изображать обыкновенные дроби на координатном луче, решать различные задачи на дроби, сравнивать дроби с одинаковыми знаменателями, решать задачи на дроби
|
| 6
| Десятичные дроби. Сложение и вычитание десятичных дробей
| 30 – 33
| 13 часов
| Знать: понятие десятичной дроби, алгоритм сравнения десятичных дробей, алгоритм сложения и вычитания десятичных дробей, понятие приближенного числа, правило округления десятичных дробей,
Уметь: читать и записывать десятичные дроби, заменять десятичную дробь обыкновенной и обыкновенную дробь десятичной, сравнивать десятичные дроби, складывать и вычитать десятичные дроби, заменять числа приближенными, округлять числа,
|
| 7
| Умножение и деление десятичных дробей
| 34 – 38
| 26 часов
| Знать: алгоритм умножения и деления десятичных дробей на натуральное число, правило умножения на 10, 100, 1000, алгоритм умножения и деления десятичных дробей, правило умножения на 0,1, 0, 01, 0,001, понятие среднего арифметического, правила нахождения среднего арифметического нескольких чисел и средней скорости
Уметь: умножать и делить десятичные дроби на натуральное число, умножать и делить десятичные дроби, находить среднее арифметическое нескольких чисел и среднюю скорость
|
| 8
| Инструменты для вычислений и измерений
| 39 – 43
| 17 часов
| Знать: устройство и предназначение микрокалькулятора, понятие процента, правила нахождения процентов от числа, числа по его процентам, процентного соотношения, понятие угла, виды углов, единицы измерения углов, устройство транспортира, понятие диаграммы, виды диаграмм
Уметь: использовать микрокалькулятор при вычислениях, записывать проценты в виде десятичной дроби и десятичную дробь в виде процентов, находить проценты от числа, число по его процентам, процентное соотношение, решать различные задачи на проценты, читать, записывать и вычислять углы, измерять и строить углы, строить и читать диаграммы
|
| 9
| Повторение
| 44
|
|
|
|
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией. Основные типы учебных занятий:
урок изучения нового учебного материала;
урок закрепления и применения знаний;
урок обобщающего повторения и систематизации знаний;
урок контроля знаний и умений.
Основным типом урока является комбинированный.
Формы организации учебного процесса:
индивидуальные, групповые, индивидуально-групповые, фронтальные.
На уроках используются такие формы занятий как:
практические занятия;
тренинг;
консультация;
Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 45 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием .
Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:
- после изучения наиболее значимых тем программы,
- в конце учебной четверти.
Общая характеристика учебного предмета Курс математики 5 класса включает основные содержательные линии: Элементы алгебры;
Элементы геометрии;
Вероятность и статистика;
Множества;
Математика в историческом развитии.
«Арифметика» служит фундаментом для дальнейшего изучения математики и смежных дисциплин, способствует развитию вычислительных навыков, логического мышления, умения планировать и осуществлять практическую деятельность, необходимую в повседневной жизни.
«Элементы алгебры» показывают применение букв для обозначения чисел, для нахождения неизвестных компонентов арифметических действий, свойств арифметических действий, систематизируют знания о математическом языке.
«Элементы геометрии» способствуют формированию у учащихся первичных о геометрических абстракциях реального мира, закладывают основы формирования правильной геометрической речи.
«Вероятность и статистика» способствуют формированию у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, понимать вероятностный характер многих реальных зависимостей, обогащается представление о современной картине мира.
«Множества» способствуют овладению учащимися некоторыми элементами универсального математического языка.
«Математика в историческом развитии» способствует созданию общекультурного, гуманитарного фона изучения математики.
Вероятность и статистика, «Множества», «Математика в историческом развитии» изучаются сквозным курсом, отдельно на их изучение уроки не выделяются.
Личностные, метапредметные и предметные результаты
освоения содержания курса Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
умения контролировать процесс и результат учебной математической деятельности;
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умения осуществлять контроль по образцу и вносить необходимые коррективы;
способности адекватно оценивать правильность или Ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
умения создавать, применять и преобразовывать зна- ково-символические средства, модели и схемы для решения учебных и познавательных задач;
развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участ-. ников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
8)первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
умения самостоятельно ставить цели, выбирать и создавать алгоритмы для рещения учебных математических проблем;
способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами,"
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами. Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
развить пространственные представления и изобразительные умения,
развить логическое мышление и речь, умениия логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Изучение математики в 5 классе направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, и достижение которых является обязательным условием положительной аттестации ученика.
Требования к уровню подготовки: существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов;
выполнять арифметические действия с натуральными числами; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора;
устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
|
|
|