|
Протокол № от 29. 08. 2015г. Согласовано с учителем и/о замдиректора по увр /Т. В. Шлома Муниципальное бюджетное общеобразовательное учреждение
Увельская основная общеобразовательная школа.
.
-
Рассмотрена на заседании МО протокол № от 29.08.2015г.
| Согласовано с учителем и/о замдиректора по УВР _________/Т.В. Шлома/
| Принято на заседании педагогического совета школы протокол №
от 29.08.2015г.
| Утверждаю.
Директор школы:
________/Н.В.Шлома/
|
Рабочая программа
по математике
8 класс.
Разработал: учитель математики
первой квалификационной категории
Белоус Наталья Петровна
2015 г.
Пояснительная записка. Рабочая программа по математике 8 класса для основной общеобразовательной школы составлена на основе следующих нормативно-правовых и инструктивно-методических документов:
Федеральный компонент государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования (Приказ МО РФ от 05.03.2004 № 1089).
Программы общеобразовательных учреждений. Геометрия. 7 – 9 классы / Т.А.Бурмистрова. – М.: Просвещение, 2010;
Программы общеобразовательных учреждений. Алгебра 7 – 9 классы / Т.А.Бурмистрова. – М.: Просвещение, 2009.
базисный учебный план общеобразовательных учреждений Брянской области на 2014-2015 учебный год.
учебный план МБОУ Увельская ООШ на 2014-2015 учебный год.
Согласно федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение математики в 8 классе отводится не менее 170 часов (из расчёта 5 часов в неделю).
Рабочая программа рассчитана на 175 учебных часа ( 5 часов в неделю). На преподавание курса алгебры – 3 часа в неделю, всего 102 часа, из них контрольных работ 11 часов. На преподавание курса геометрии – 2 часа в неделю, всего 68 часов, из них контрольных работ 6 часов. Оставшиеся 5 учебных часов отводятся на итоговые уроки в конце I, II, III четвертях (3 ч) и повторение пройденного материала в конце учебного года (2 ч).
Тема по предмету геометрия: «Геометрические построения», на которую отводится 7 ч по программе общеобразовательных учреждений не проводится, так как данная тема изучалась в 7 классе. Поэтому вышеуказанные 7 ч отданы на изучение следующих тем:
Теорема Пифагора - 3 ч
Декартовы координаты на плоскости - 2 ч
Движение – 1 ч
Векторы – 1 ч
Программа соответствует учебникам:
Алгебра: Учеб. для 8 кл. общеобразоват. учреждений Ю.Н. Макарычев, Н.Г. Миндюк под редакцией С.А. Теляковского. М. «Просвещение» - 2010г.
Учебник «Геометрия, 7-9», А.В.Погорелов. М. «Просвещение» - 2010г.
Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Итоговая аттестация предусмотрена в виде административной контрольной работы.
Программа конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам курса алгебры и геометрии 8 класса.
В программе приводится распределение учебного времени между наиболее крупными разделами. Содержание представлено в виде нескольких блоков, объединяющих логически связанные между собой вопросы. Представленная программа выполняет две основные функции.
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития, учащихся 8 класса средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся. Цели и задачи курса Общепредметные цели:
Формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
Овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественн0научных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
Развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
Воспитание средствами математики культуры личности; отношения к математике как части общечеловеческой культуры; знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Изучение математики в 8 классе направлено на достижение следующих целей: • выработать умение выполнять тождественные преобразования рациональных выражений, систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразование выражений, содержащих квадратный корень, решать квадратные и простейшие рациональные уравнения, применять их к решению задач; ознакомить учащихся с применением неравенств для оценки значений выражений; выработать умение решать линейные неравенства с одной переменной и их системы; расширять понятие степени, рассмотреть свойства степени с целым показателем; сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации,
• расширить и углубить знания о геометрических фигурах;
• познакомить с новыми фигурами — четырехугольниками и ах свойствами
• сформировать представление о фигурах, симметричных относительно точки или прямой;
понятие площади многоугольника, развить умение вычислять площадь фигур, применяя изученные свойства и формулы, теорему Пифагора;
• дать понятие подобных треугольников и применение подобия треугольников в процессе решения задач;
• расширить сведения об окружности, ввести понятия вписанной и описанной окружности, вписанного и центрального углов;
• развитие учебно-исследовательской деятельности учащихся, самостоятельности, способность анализировать и систематизировать изучаемый материал.
• продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
• сформировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
• продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе преподавания математики в 8 классе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательственных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификация информация, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технология;
пользоваться геометрическим языком для описания предметов.
Задачи:
Увеличить теоретическую значимость изучаемого материала.
Научить применять теорию к решению задач.
Развивать математическую речь.
Осуществлять связь алгебры с физикой, геометрией, химией.
Научить пользоваться геометрическим языком для описания предметов.
Начать изучение многоугольников и их свойств, научить находить их площади.
Ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников.
Ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике, научить применять эти понятия при решении прямоугольных треугольников.
Ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия.
Ввести понятие вектора, суммы векторов, разности и произведения вектора на число.
Познакомить с понятием касательной к окружности.
Содержание курса Алгебра
1. Рациональные дроби (23 ч)
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и ее график.
Основная цель — выработать умение выполнять тождественные преобразования рациональных выражений.
Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями, не должны быть излишне громоздкими и трудоемкими.
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.
Изучение темы завершается рассмотрением свойств графика функции у =.
2. Квадратные корни (19 ч)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , ее свойства и график.
Основная цель — систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество = |a|, которые получают применение в применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция у = , её свойства и график. При изучении функции у = показывается ее взаимосвязь с функцией у = , где х ≥ 0.
3. Квадратные уравнения (21 ч)
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Основная цель — выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.
В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.
Основное внимание следует уделить решению уравнений вида ax + bx + c = 0, где а ≠0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач. 4. Неравенства (20 ч)
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Основная цель — ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.
Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при вы полнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств. 5. Степень с целым показателем. Элементы статистики (11 ч)
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.
Основная цель — выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Даётся понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счёт введения таких понятий, как полигон и гистограмма. 6. Повторение (8 ч)
Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.
Геометрия
1. Четырехугольники (19 ч)
Определение четырехугольника. Параллелограмм и его свойства. Признаки параллелограмма. Прямоугольник, ромб, квадрат и их свойства. Теорема Фалеса. Средняя линия треугольника. Трапеция. Средняя линия трапеции. Пропорциональные отрезки.
Основная цель — дать учащимся систематизированные сведения о четырехугольниках и их свойствах.
Доказательства большинства теорем данной темы проводятся с опорой на признаки равенства треугольников, которые используются и при решении задач в совокупности с применением новых теоретических фактов. Поэтому изучение темы можно организовать как процесс обобщения и систематизации знаний учащихся о свойствах треугольников, осуществив перенос усвоенных методов на новый объект изучения.
Вводимые при изучении темы сведения о различных видах четырехугольников и их свойствах играют важную роль в изучении последующего материала. Основное внимание следует направить на решения задач, в ходе которых отрабатываются практические умения применять свойства и признаки параллелограмма и его частных видов, необходимые для распознавания конкретных видов четырехугольников и вычисления их элементов.
Рассматриваемая в теме теорема Фалеса (теорема о пропорциональных отрезках) играет вспомогательную роль в построении курса. Воспроизведения ее доказательства необязательно требовать от учащихся. Примером применения теоремы Фалеса является доказательство теоремы о средней линии треугольника. Теорема о пропорциональных отрезках используется в доказательстве теоремы о косинусе угла прямоугольного треугольника. 2. Теорема Пифагора (13 ч + 3 ч)
Синус, косинус и тангенс острого угла прямоугольного треугольника. Теорема Пифагора. Неравенство треугольника. Перпендикуляр и наклонная. Соотношение между сторонами и углами в прямоугольном треугольнике. Значения синуса, косинуса и тангенса некоторых углов.
Основная цель — сформировать аппарат решения прямоугольных треугольников, необходимый для вычисления элементов геометрических фигур на плоскости и в пространстве.
Изучение теоремы Пифагора позволяет существенно расширить круг геометрических задач, давая вместе с признаками равенства треугольников достаточно мощный аппарат решения задач.
Большое внимание в данной теме уделяется вопросам, связанных с решением прямоугольных треугольников. Для этого необходимо прочное усвоение определений синуса, косинуса и тангенса острого угла.
В ходе решения задач усваиваются основные алгоритмы решения прямоугольных треугольников, при проведении практических вычислений вырабатываются навыки нахождения с помощью таблиц или калькуляторов значений синуса, косинуса, и тангенса угла, а в ряде задач используются значения синуса, косинуса и тангенса углов 30°, 45°, 60°.
Соответствующие умения являются опорными для решения вычислительных задач и доказательств ряда теорем в курсе планиметрии и стереометрии. Кроме того, они используются и в курсе физики. Поэтому необходимо добиться прочных навыков практического применения этих фактов в решении вычислительных задач. При изучении данной темы широко используются и получают дальнейшее развитие такие навыки и алгебраические умения учащихся, как решение квадратных уравнений, извлечение квадратных корней, преобразования алгебраических уравнений.
В конце темы рассматривается теорема о неравенстве треугольника. Тем самым пополняются знания учащихся о свойствах расстояний между точками. Наиболее важным с практической точки зрения является случай, когда данные точки не лежат на одной прямой, т. е. свойство сторон треугольника. Его полезно закрепить на ряде примеров. В то же время воспроизведения доказательства теоремы можно от учащихся не требовать. 3. Декартовы координаты на плоскости (10 ч + 2 ч)
Прямоугольная система координат на плоскости. Координаты середины отрезка. Расстояние между точками. Уравнение прямой и окружности. Координаты точки пересечения прямых. График линейной функции. Пересечение прямой с окружностью. Синус, косинус и тангенс углов от 0° до 180°.
Основная цель — обобщить и систематизировать представления учащихся о декартовых координатах; развить умение применять алгебраический аппарат при решении геометрических задач.
В начале темы вводится определение декартовых координат, выводятся формулы для нахождения координаты середины отрезка и расстояния между точками. Рассматриваются уравнения окружности и прямой и способы нахождения с их помощью координат точки пересечения прямых, прямой с окружностью.
В данной теме демонстрируется эффективность применения формул для координат середины отрезка, расстояния между точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры. 4. Движение (7 ч + 1 ч)
Движение и его свойства. Симметрия относительно точки и прямой. Поворот. Параллельный перенос и его свойства, понятие о равенстве фигур.
Основная цель — познакомить учащихся с примерами геометрических преобразований.
Поскольку в дальнейшем движения не применяются в качестве аппарата для решения задач и изложения теории, можно рекомендовать изучение материала в ознакомительном порядке, т.е. не требовать от учащихся воспроизведения доказательств. Однако основные понятия — симметрия относительно точки и прямой, параллельный перенос — учащиеся должны усвоить на уровне практических применений.
Векторы (8 ч + 1 ч)
Вектор. Абсолютная величина и направление вектора. Равенство векторов. Координаты вектора. Сложение векторов и свойства. Умножение вектора на число. Скалярное произведение векторов. Угол между векторами.
Основная цель — познакомить учащихся с элементами векторной алгебры и их применением для решения геометрических задач; сформировать умение производить операции над векторами.
Основное внимание следует уделить формированию практических умений учащихся, связанных с вычислением координат вектора, его абсолютной величины, выполнением сложения и вычитания векторов, умножения вектора на число. Наряду с операциями над векторами в координатной форме следует уделить большое внимание операциям в геометрической форме. Действия над векторами в координатной и геометрической формах используются при параллельном изучении курса физики. Знания о векторных величинах, приобретенные на уроках физики, могут быть использованы для мотивированного введения на предметной основе ряда основных понятий темы.
Повторение (4 ч)
Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.
Требования к уровню подготовки учащихся В результате изучения курса математики учащиеся должны знать:
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
существо понятия математического доказательства; некоторые примеры доказательств;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и статистические данные;
находить вероятность случайных событий в простейших случаях;
уметь:
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать изученные геометрические фигуры, различать их взаимное расположение;
изображать изученные геометрические фигуры, выполнять чертежи по условию задач;
использовать теорему Пифагора и тригонометрические функции при решении прямоугольных треугольников;
вычислять значение геометрических величин: длин и углов; для углов от 0º до 180º определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и периметры треугольников и четырёхугольников;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования.
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
выстраивания аргументации при доказательстве и в диалоге;
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
сравнения шансов наступления случайных событий;
оценки вероятности случайного события в практических ситуациях;
сопоставления модели с реальной ситуацией.
понимания статистических утверждений.
описания реальных ситуаций на языке геометрии;
расчётов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии;
решения простейших практических задач, связанных с нахождением геометрических величин (использую при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Учебно-методическое обеспечение
Программы общеобразовательных учреждений. Геометрия. 7 – 9 классы. Т.А. Бурмистрова. – М.: Просвещение, 2009;
Программы общеобразовательных учреждений. Алгебра 7 – 9 классы. Т.А. Бурмистрова. – М.: Просвещение, 2010.
Учебник Алгебра 8. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.В. Суворова. Под редакцией С.А. Теляковского. / М.: Просвещение, 2010.
Геометрия 7-9: учебник / А.В.Погорелов. — М.: Просвещение, 2010.
Л. А. Александрова, Алгебра 8 класс: самостоятельные работы для общеобразовательных учреждений. - М.: Мнемозина, 2011.
Алгебра. Дидактические материалы. 8 класс / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. — 16-е изд. — М: Просвещение, 2012
А.Г.Мордкович, Е.Е. Тульчинская Алгебра: тесты для 7-9 классов общеобразовательных учреждений. - М.: Мнемозина, 2012.
Алгебра. Тематические тесты. 8 класс / Ю.П. Дудницын, В.Л. Кронгауз. – 3-е изд. – М.: Просвещение, 2013.
Геометрия 7-9: поурочные разработки / В.И.Жохов, Г.Д. Карташева, Л.Б.Крайнева. — М.: Просвещение, 2010
Контрольные работы по геометрии для 7 – 9 классов: книга для учителя / Ю.П. Дудницын, В.Л. Кронгауз. – М.: Просвещение, 2010.
Геометрия: тематические тесты 8 класс / Т.М.Мищенко. – М.: Просвещение, 2011.
Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса / А.П.Ершова, В.В. Голобородько, А.С.Ершова.— М: Илекса, 2010.
Миндюк Н.Г. Алгебра. Рабочие программы. Предметная линия учебников Ю.Н. Макарычева и других. 7-9 классф: пособие для учителей общеобразов. Учреждений / Н.Г. Миндюк. – М.: Просвещение, 2011.
Алгебра: элементы статистики и теории вероятностей: учеб. Пособие для учащихся 7-9 кл. общеобразова. учреждений / Ю.Н. макарычев, Н.Г Миндюк; под ред. С.А. Теляковского. – 6-е изд. –М.: Просвещение, 2008.
Контрольные работы по геометрии для 7 – 9 классов: книга для учителя / Ю.П. Дудницын, В.Л. Кронгауз. – М.: Просвещение, 2010.
Геометрия в 7-9 классах: (Метод. Рекомендации к преподаванию курса геометрии по учеб. Пособию А.В. Погорелова): Пособие для учителя / Л.Ю. Березина, Н.Б. Мельникова, Т.М. митщенко и др. – М.: Просвещение, 2009.
Электронное пособие: Геометрия. Поурочные планы 7-9 классы. Издательство: «Учитель».
Электронное пособие: Алгебра. Поурочные планы 8 класс. Издательство: «Учитель».
Мультимедийные презентации.
Интернет-ресурсы.
|
|
|